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Plan of the Talk

• Introduction to Lattice Gauge Theories

• Quark-antiquark potential: the Nambu-Goto
effective string

• Polyakov loop correlators.

• Interfaces in the 3d Ising model.

• Conclusions

Main goal of this talk:

Show that the Nambu-Goto effective string is
a poweful tool to study several non-perturbative
observables in LGTs and in the 3d Ising model.
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String theory and Lattice Gauge Theories

• Conjecture: Two color sources in a confining gauge
theory are bound together by a thin flux tube, which
can fluctuate like a massless string.

• Main consequence: Linearly rising potential.

• Wilson loop:

T

R
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• Potential V (R) between two external, massive quark
and anti-quark sources from Wilson loops

〈W (L,R)〉 ∼ e−LV (R) (large L)

V (R) = − lim
L→∞

1

L
log 〈W (L,R)〉

In the limit of infinite mass quarks (pure gauge
theory) we find the famous “area law” for the Wilson
loop

• Area law ↔ linear potential

〈W (T,R)〉 ∼ e−σRT ; V (R) = σR + . . .

σ is the string tension
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Quantum corrections and effective

models

The area law is exact in the strong coupling limit
(β → 0). As the continuum limit (β → ∞) is
approached quantum corrections become important.

• Leading correction for large R: The “Lüscher term”

V (R) = σ R − π

24

d − 2

R
+ O

(

1

R2

)

. (1)

from quantum fluctuations of d−2 massless modes:
transverse fluctuations of the string [Lüscher,
Symanzik and Weisz, (1980)]

• Can be derived assuming a (very naive!) “SOS
picture” for the fluctuations of the surface bordered
by the Wilson loop → two-dimensional conformal
field theory of d − 2 free bosons
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• This is the first (and simplest) example of an
effective description for the interquark potential.

• Consequence: Using known results of CFT’s we can
predict the behaviour of the Wilson loop for finite
values of L.

< W (R, L) >= e−(σRL)Zq(R, L)

Where Zq(R,L) is the partition function of d − 2
free massless scalar fields living on the rectangle
defined by the Wilson loop: R × L

Zq(R,L) ∝
[

η(τ)√
R

]−d−2
2

where η(τ) is the Dedekind η function and τ =
iL/R.
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• The L ↔ R simmetry is ensured by this identity

η

(

−1

τ

)

=
√
−iτ η(τ)

known as the “modular” transformation of the η.

• Defining: F (R,L) ≡ − log < W (R, L) > and
expanding the Dedekind function

η(τ) = q
1
24

∞
∏

n=1

(1 − qn) ; q = e2πiτ ,

one finds

F (R, L) = σRL−(d − 2)

[

πL

24R
+

1

4
log R

]

+ ...

From which we find as anticipated:

V (R) = σ R − π

24

d − 2

R
+ O

(

1

R2

)

.
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The following ratio is particularly useful to single out
the effective string contribution from a collection of
Wilson loops (it requires a very precise knowledge
of σ):

R(L, n) ≡ 〈W (L + n, L − n)〉
〈W (L, L)〉 exp(−n2σ)

It is easy to see that R(L, n) depends only on
t = n/L:

R(L, n) = F (t) =







η(i)
√

1 − t

η
(

i1+t
1−t

)







1/2

and does not contain any adjustable parameters.
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This behaviour can be tested with Montecarlo
simulation. In the case of the 3d Ising gauge model
very precise simulations can be performed and a
perfect agreement in the large R regime is found

However corrections appear as R decreases
and suggest that a more sophisticated effective
description is needed.
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Short R deviations: the prediction of the free string
model is R(L, L/2) = 1.09153 . . . (straight line).

The underlying string model should determine a
specific form of the effective theory, and an
expression of the potential V (R) that extends to
finite values of R.
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Various models of effective strings

• “Free” theory: d − 2 bosonic fields living on
the surface spanned by the string, describing its
transverse fluctuations

• Standard bosonic string theory: Nambu-Goto action
∝ area of the world-sheet surface

– Possible first-order formulation á la Polyakov
(we’ll use this)

– In d 6= 26, bosonic string is ill-defined (Weyl
invariance broken by quantum effects).

• Attempts to a consistent string theory description:
Polchinski-Strominger, Polyakov, AdS/CFT

– This is the aim, of course. However, we’ll not
touch the subject in this talk...
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The Nambu-Goto string

• Action ∼ area of the surface spanned by the string
in its motion:

S = −σ

∫

dξ0dξ1
√

det gαβ (2)

where gαβ is the metric “induced” on the w.s. by
the embedding:

gαβ =
∂XM

∂ξα

∂XN

∂ξβ
GMN (3)

ξα = world-sheet coords. (ξ0 = proper time, ξ1

spans the extension of the string)
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Nambu-Goto: perturbative approach

This is the “standard” approach to effective string
calculation. It traces back to the seminal paper by
Dietz and Filk in 1982.

• One can use the world-sheet re-parametrization
invariance of the NG action to choose a “physical
gauge”:

– The w.s. coordinates ξ0, ξ1 are identified with
two target space coordinates x0, x1

• One can study the 2d QFT for the d− 2 transverse
bosonic fields with the gauge-fixed NG action

Z =

∫

DXie−σ
R

dx0dx1
√

1+(∂0
~X)2+(∂1

~X)2+(∂0
~X∧∂1

~X)2

=

∫

DXie−σ
R

dx0dx1{1+(∂0
~X)2+(∂1

~X)2+int.s}

perturbatively, the loop expansion parameter being
1/(σA)
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• Problem: This gauge fixing is anomalous (unless
we are in d = 26)

• “Effective” solution: It can be shown (Olesen, 1985)
that the corrections due to the anomaly decay very
rapidly with R thus one can hope to use this model
as an “effective” large distance description. Indeed
as R → ∞ the NG action in the physical gauge
reduces to a collection of (d-2) free bosonic fields
(i.e. to the Lüscher term)

• Results: in 1982 Dietz-Filk were able to perform the
calculation up to 2 loop for the 3 geometries (disk,
cylinder, torus). Higher order terms are too difficult
to be evaluated
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Nambu-Goto: First order formulation

and covariant quantization.

A way to avoid the complexity of the perturbative
approach and to evaluate the EXACT partition function
for the Nambu-Goto effective string is to resort to the
covariant quantization of the string:

• The NG action can be written in a 1st order
formulation (no awkward square roots)

S = −σ

∫

dξ0dξ1
√

hhαβ∂αXM∂βXM (4)

with hαβ = independent w.s metric

• Re-parametrization and Weyl invariance can be used
to set hαβ → ηαβ

– Actually, Weyl invariance is broken by quantum
effects in d 6= 26 → the “Liouville mode” does
not decouple at the quantum level.
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• As a result one ends up with a free action but with:

– Virasoro constraints Tαβ = 0 from hαβ e.o.m.
– a residual conformal invariance

• In a covariant quantization, the Virasoro constraints
are imposed on physical states á la BRST

– All d directions are treated on the same footing
– Introduction of ghosts

• The quantum anomaly for d 6= 26 manifests itself
with the appearance of a new field: the Liouville
mode.

– In this framework neglecting the anomaly
corresponds to treat the Liouville mode as a
classical field (and decouple it from the theory)

– In principle one could improve the quality of the
results by a suitable perturbative treatment of the
Lioville field
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Various observables with an effective

string description

Three typical observables with a geometrically
simple effective string picture

• Wilson loop: disk topology

• Correlator of Polyakov loops: cylinder topology

• Interfaces: torus topology
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Polyakov loop correlators

The peculiar geometry of the Polyakov loop
correlators implies that they are perfect tools to explore
the range of scales where deviations with respect to
the free bosonic effective string appear.

Important observation:

In the Wilson loop geometry (T = 0) RL is simply
the area of the loop. One can always choose large
enough Wilson loops so as to reach the free string
limit.

In the finite temperature geometry L = 1/T .
The free string limit is reached only for very
low temperatures. In particular at intermediate
temperatures (say, T ≥ Tc/3) higher order effects
(which encode the self-interaction of the bosonic fields)
become important and cannot be neglected.
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First order approximation: transverse

d.o.f. as free bosons

Let us define the free energy as

G(R) = 〈P (0)P †(R)〉 = exp [−F (R,L)]

F (R,L) depends on the inverse temperature L ≡ 1/T
(i.e. the lattice size in the compactified time direction)
and the distance R, and is given by a classical and a
quantum contribution:

F (R,L) = Fcl(R, L) + Fq(R, L)
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The classical term corresponds to the area law:

Fcl(R, L) = σ0LR + k(L)

while the quantum term turns out to be:

Fq(R,L) = (d − 2) log η(τ) τ ≡ iL

2R

where η is again the Dedekind function
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Important observation:

Due to the modular transformation

η

(

−1

τ

)

=
√
−iτ η(τ)

the asymptotic expansion is different in the two
regimes:

2R < L

Fq(R,L) = (d − 2)

[

− πL

24R
+

∞
∑

n=1

log(1 − e−πnL/R)

]

2R > L

Fq(R,L) = (d − 2)

[

−πR

6L
+

1

2
log

2R

L

]

+(d − 2)

[ ∞
∑

n=1

log(1 − e−4πnR/L)

]
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Hence for R > L/2 the string correction is linear
in R and acts as a finite temperature renormalization
of the string tension:

σ(T ) = σ0 − (d − 2)
πT 2

6

As T increases this string effect will induce a
deconfinement transition.
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N. G. effective action: perturbative

approach in the physical gauge.

The next to leading order in 1/σ of the free energy
can be evaluated in the framework of the zeta function
regularization (K. Dietz and T. Filk, Phys. Rev. D 27

(1983) 2944.) the result in d = 3 is:

F (NLO)
q (R, L) = − π2L

1152 σR3

[

2E4(τ) − E2
2(τ)

]

where E2 and E4 are the second and fourth order
Eisenstein functions.

E2(τ) = 1 − 24
∞

X

n=1

σ(n)q
n

(5)

E4(τ) = 1 + 240
∞

X

n=1

σ3(n)qn
(6)

q ≡ e2πiτ , (7)

where σ(n) and σ3(n) are, respectively, the sum of all divisors

of n (including 1 and n), and the sum of their cubes.
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N.G.: exact partition function in the

covariant gauge.

• Action (in conformal gauge)

S =
1

4πα′

∫

dξ0

∫ π

0

dξ1
[

(∂0X
M)2 + (∂1X

M)2
]

+Sgh.

• World-sheet parametrized by

– ξ1 ∈ [0, π] (open string)
– ξ0 (proper time)

• The fields XM (M = 0, . . . , d − 1) describe the
embedding of the world-sheet in the target space
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• Boundary conditions:

– Neumann in “time” direction:

∂0X
0(ξ0, ξ1)

∣

∣

ξ1=0,π
= 0

– Dirichlet in spatial directions:

~X(ξ0, 0) = 0 , ~X(ξ0, π) = ~R .

“open string between D0-branes”

• The string fields have thus the expansion

X0= x̂0+
p̂0

πσ
+

i√
πσ

∑

n 6=0

α0

n
e−inξ0

cosnξ1

~X =
~R

π
ξ1 − 1√

πσ

∑

n 6=0

~α

n
e−inξ0

sinnξ1

[

αM
m , αN

n

]

= m δm+n,0 δMN
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The free energy

Interaction between the two Polyakov loops (the
D0-branes) ↔ free energy of the open string. The
result is

F = F (0) + 2
∞
∑

m=1

F (m)

with

F (m) =

√

σL2

4π

∫ ∞

0

dt

2t
3
2

e−
σL2 m2

4t −σR2t

(

1

η(it)

)d−2

where the integer m is the # of times the open string
wraps the compact time in its one loop evolution.
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Each topological sector F (m) describes the
fluctuations around an “open world-sheet instanton”

X0(ξ0 + t, ξ1) = X0(ξ0, ξ1) + mL

An example with m = 0 (N.B. The classical solution
degenerates to a line)
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• The case m = 1. The world-sheet exactly maps to
the cylinder connecting the two Polyakov loops.

• The sector with m = 1 of our free energy
corresponds to the effective NG partition function
we are looking for.
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The NG result as a sum over excited

states.

F (m) =

√

σL2

4π

∫ ∞

0

dt

2t
3
2

e−
σL2 m2

4t −σR2t

(

1

η(it)

)d−2

• Expand in series the Dedekind functions:

( ∞
∏

r=1

1

1 − qr

)d−2

=
∞
∑

k=0

ckq
k

• Plug this into F (m) and integrate over t using

∫ ∞

0

dt

t
3
2

e−
α2

t −β2t =

√
π

|α| e
−2|α| |β|
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• The result is

F (m) =
1

2|m|
∑

k

cke
−|m|LEk(R) , (m 6= 0)

where the coefficient ck are the partitions of integers
(they come form the expansion of the Dedekind
function) and

Ek(R) = σR

√

1 +
2π

σR2

(

k − d − 2

24

)

• first test: This spectrum coincides with that
conjectured by Arvis long ago (1982) by (formal)
quantization of the NG action in the physical gauge.

• second test: Expanding the above expression in
powers of 1

σR2 one exactly recovers at the second
order the Dietz and Filk’s result.
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Duality and the closed string

interpretation

Our first-order formulation is well-suited to give
the direct closed string channel description of the
correlator: The closed string channel tree level
exchange between boundary states corresponds to the
modular transformation t → 1/t of the open string
channel 1-loop free energy
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The result of the transformation is

F (m) = L
T 2

0

4

∑

k

ck G (R;M(m, k))

where G (R; M) = propagator of a scalar field of mass M over

the spatial distance ~R between the two D0-branes:

G(R; M) =
1

2π

„

M

2πR

«
d−3
2

Kd−3
2

(MR) ,

the mass M(m, k) is that of a closed string state with k

representing the total oscillator number, and m the wrapping

number of the string around the compact time direction

M
2
(m, k) = (mσL)

2

»

1 +
8π

σL2m2

„

k − d − 2

24

«–

and T0 is the usual D0-brane tension in bosonic string theory:

T 2
0 = 8π

„

π

σ

«
d
2−2

Third test: This expression agrees with that obtained
by Lüscher and Weisz (2005) with a different approach.
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Two important remarks

• From the lowest mass (k = 0, m = 1) in the closed
string channel:

M2(1, 0) = (σL)2
[

1 − π(d − 2)

3σL2

]

one can obtain an estimate for the deconfinement
temperature (recall that T = 1/L) which in this
framework appears as a consequence of the tachionic
state present in the NG string (Olesen, 1985):

Tc√
σ

=

√

3

π(d − 2)

This estimate turns out to be in very good
agreement with MC simulations for several LGT’s.
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• In the large R and small L limit the NG partition
function reduces to a single Bessel function. This
means that the the NG effective string predicts the
following behaviour for the Polyakov loop correlator:

〈P (0)P †(R)〉 ∼ Kd−3
2

(MR) ,

with M ∼ σL. This is exactly the limit in which

dimensional reduction occurs. In LGT this is known as the

“Svetitsky-Yaffe” conjecture which states that the Polyakov

loop correlator of a d dimensional LGT (in the confining

phase) can be mapped into the spin-spin correlator of a

suitably chosen (d − 1) spin model (in the high temperature

phase). From the QFT approach to spin models we know that

at high temperature and large distance whatever model we

study the spin spin correlator will be dominated by the state

of lowest mass whose propagator in d′ dimensions is given by

G(R) ∼ Kd′−2
2

(mR)

Since d′ = d − 1 this result exactly coincides with
what we obtain with the NG string.
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Comparison with MC simulations

Duality and a new algorithm: the snake algorithm
allow high precision simulations for very large values of
R and L in the gauge Ising model.

All the above predictions can be tested with
precision δG

G which in some cases reaches 10−4.

In the comparison there is no free parameter. The
figures are not the result of a fitting procedure.

The agreement at large distance with NG is
impressive. At shorter distances deviations appear.
Liouville mode?
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The snake algorithm.

Goal: compute the ratio G(R)/G(R + 1).

Proposal: Use duality and factorize the ratio of
partition functions in such a way that for each factor
the partition functions differ just by the value of J〈ij〉
at a single link

ZL×R

ZL×(R+1)
=

ZL×R,0

ZL×R,1
...

ZL×R,M

ZL×R,M+1
...

ZL×R,L−1

ZL×R,L
,

where L × R,M denotes a surface that consists of a
L × R rectangle with a M × 1 column attached.
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Figure 1: Sketch of the surface denoted by L × R, M . In the

example, L = 6, R = 8 and M = 2. The circles indicate the

links that intersect the surface.

Each of the factors can be written as expectation
value in one of the two ensembles:

ZL×R,M+1

ZL×R,M
=

∑

si=±1 exp(−β̃HL×R,M(s)) exp(−2β̃sksl)

ZL×R,M
,

where < k, l > is the link that is added going from
L × R,M to L × R,M + 1.

Further improvement: hierarchical updates.

Result: the error show no dependence on R !!
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Figure 2: Montecarlo results for the Polyakov loop correlators

in the (2+1) dimensional gauge Ising model. The data are taken

at a fixed value of the lattice in the time direction: L = 80

(which corresponds to a very low temperature T = Tc/10) and

a varying size of the interquark distance (10 < R < 80). In the

figure is plotted the deviation of Γ (the ratio G(R+1)/G(R) of

two correlators shifted by one lattice spacing) with respect to the

Nambu-Goto string expectation ΓNG (which with this definition

of observables corresponds to the straight line at zero). Notice

the remarkable agreement in the range 24 < R < 80, which is

not the result of a fitting procedure: in the comparison reported

in the figure there is no free parameter.
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Figure 3: Montecarlo results for the Polyakov loop correlators

in the (2+1) dimensional gauge Ising model. The data are taken

at a fixed value R = 32 of the interquark distance and a varying

size (8 < L < 24) of the lattice in the time directions. In the

figure is plotted the deviation of Γ (defined as in the previous

figure) with respect to the asymptotic free string expectation

ΓLO (which with this definition of observables corresponds to the

straight line at zero). The curve is the Nambu-Goto prediction

for this observable. Notice the remarkable agreement in the range

16 < L < 24, which as for the previous figure is not the result

of a fitting procedure: in the comparison reported in the figure

there is no free parameter.
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Interfaces in Ising-like models

• An interface separating regions with different
magnetization can be forced in discrete spin models
(Ising, etc.) by suitably fixing the boundary
conditions in the direction orthogonal to the
interface.

• in three dimensions such a spin model is related by
duality to a gauge model. Example:

3d Ising spin model ↔ 3d Ising gauge model
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• It is rather natural to try to describe the fluctuating
interface by means of some effective string theory
as for the Wilson loop and the P.L. correlators.

• This approach is known in condesed matter as the
“capillary wave model” various results for Ising (and
related) interfaces were obtained in past years using
the first order approximation (free bosonic fields) of
this model. No attempt was done to go beyond this
level.
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Nambu-Goto result

Also in this case it is possible to evaluate exactly
the NG partition function, following the same lines
of the Polyakov loops calculation. The final result
depends only on the geometry of the target space,
in particular on the area A = L1L2 and the modulus
u = L2/L1 of the interface plane:

I(d)
= 2

„

σ

2π

«
d−2
2

VT

∞
X

m=0

m
X

k=0

ckcm−k

„E
u

«
d−1
2

Kd−1
2

(σAE)

with VT the transverse volume and

E =

s

1 +
4πu

σA
(m − d − 2

12
) +

4πu2(2k − m)2

ξ2A2

We checked that the expansion at the second order
in 1

σA of this expression agrees with the Dietz and
Filk calculation.
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Comparison with MC simulations

Very accurate MC estimates for the free energy Fs

of interfaces in the 3d Ising model can be obtained
with snake-like algorithms.

We can compare the Fs MC data with the free
energy F obtained from our partition function in d = 3:

F = − log

(I(3)

VT

)

+ N .

The constant N is the only free parameter to be fitted.
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Square lattices (u = 1):

Lmin (
√

σA)min N χ2/(d.o.f)

Data set 1

19 1.949 0.91957(18) 4.22

20 2.051 0.91891(22) 1.84

21 2.154 0.91836(27) 0.63

22 2.257 0.91829(33) 0.70

23 2.359 0.91797(45) 0.63

Rectangular lattices (u 6= 1)

L1 L2

√
σA u Fs diff

10 12 2.29843 6/5 7.1670(6) 0.0016

10 15 2.56972 3/2 8.4449(12) −0.0004

10 18 2.81498 9/5 9.6976(17) −0.0009

10 20 2.96725 2 10.5235(25) −0.0012

10 22 3.11208 11/5 11.3466(36) 0.0017

• No fitted parameters! (the normaliz. N was already
fixed by previous fit).

45



Conclusions

• Covariant quantization of the free bosonic string
attached to two parallel D0 branes leads to the
effective Nambu-Goto string if one neglects the
Liouville mode

• MC simulations strongly support the conjecture that
Polyakov loops correlators and interfaces in the
3d gauge Ising model are well described at large
enough distances and low enough temperatures by
this Nambu-Goto effective string theory

• At smaller distances and/or higher temperatures
significative deviations from the N-G predictions
appear.
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Open questions and future plans

• The large distance agreement with N-G is a
peculiarity of the 3d Ising model or a general feature
of LGT’s?.

• The short distance deviations are a signature of the
breaking of the effective string picture or may be
interpreted in a string framework (maybe in terms
of the Liouville mode)?

• Which is the meaning (in the context of LGT) of the
other topological sectors that we obtain in covariant
quantization? Is there a simple way to test these
predictions on the lattice?

• Can this effective NG string shed some light on the
real (i.e. consistent at the quantum level) string
theory behind the 3d Ising model and QCD?
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