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Phase-ordering in general

Statics

Classical system of N-component spins &; in a
d-dimensional space, short range interactions (Ising,

Heisenberg).
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Dynamics

Formation and competition of ordered region (which
grow and compete), and topological defects (which anni-

hilate or shrink).




Typical size of ordered regions is L(t). If Dynamical
scaling holds (G(r,t) = g(r/L(t)) L(t) is the only rele-
vant scale, and usually L(t) ~ t'/*. For NCOP usually

z = 2 (short range interactions).

Typical example of this phenomenology is the Ising

model in one dimension (N =1, d = 1). R J.

Glauber,
J.
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Counterexample is the XYY model, particularly in d = 1.
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What happens between Ising and XY 7
(The p-state clock model (1d))
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For p = 2 is Ising, for p = o0 is XY.

Generally, for arbitrary d, one expects the same dy-
namical exponents of the Ising model, and different (p-

dependent) scaling functions. We will see that in d = 1

things are different.
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T=0

Simulations

However, numerical simulationsind = 1, T' = 0, give:
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For p > 4 there is a length growing with z = 4, as for

p = 0.
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So there is p. = 4 such that:

o for p < p. textures are destroyed and an Ising-like

behavior sets in, with z = 2 and dynamical scaling

e for p > p. textures are stable and an XY-like behavior

sets in, with violation of dynamical scaling



Can we say something more (for p <p.) ?

For p < p. the model is equivalent to the Ising model.

- For p = 4 it is trivial

Hlo] = —JSolol, — Jxol0/

Two non-interacting Ising models.



- For p = 3 it is more subtle.

Consider the correlation function G(r,t) = (7;(t) -

di.r(t)) for instance. We can show that

9 1
G(’r, t) = §GP<7", t) — 5

exactly, where Gp(r,t) is the single phase correlation
function of the 3-states 1d Potts model. This quantity

was computed exacly by Sire and Majumdar yielding

2 1
Gp(?“, t) = §G]<’I“, ?f) + 6

where Gy(r,t) is the correlation function of the Ising
model (with a global conservation law, which is irrele-

vant). Then

G(r,t) = Gr(r,t).
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Conclusions

e Dynamics of the clock model in d = 1 is rich and dif-
ferent from the case d > 1 where same exponents are

expected for all p with p-dependent scaling functions.
e T'wo radically different behaviors crossing p. = 4.

e For p < p. the model is equivalent to the Ising model:
Domains dynamics and scaling with the same expo-

nents and same scaling functions.

e For p > p. a behavior similar to the XY model:
Texture dynamics, two characteristic lengths grow-
ing with different exponents, violations of dynamical

scaling.

e Crossover structure for 1" > 0.

e Possibly, something similar can happen in other sys-
tems with N = d+ 1 where extended defects without

core analogous to textures are expected.



