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Phase-ordering in general

Statics

Classical system of N -component spins ~σi in a

d-dimensional space, short range interactions (Ising,

Heisenberg).

T

Tc > 0 if d > dl
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Dynamics

Formation and competition of ordered region (which

grow and compete), and topological defects (which anni-

hilate or shrink).
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Typical size of ordered regions is L(t). If Dynamical

scaling holds (G(r, t) = g(r/L(t)) L(t) is the only rele-

vant scale, and usually L(t) ∼ t1/z. For NCOP usually

z = 2 (short range interactions).

Typical example of this phenomenology is the Ising

model in one dimension (N = 1, d = 1). R. J.

Glauber,

J.

Math.

Phys.

4, 294

(1963).
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Counterexample is the XY model, particularly in d = 1.
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A. D.

Ruten-

berg

and A.

J. Bray,

PRL

74,

3836

(1995).

Two lengths, Lw(t) ∼ t1/4 and Lc(t) ∼ t1/2.

No dynamical scaling.
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What happens between Ising and XY ?
(The p-state clock model (1d))
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H [σ] = −J
∑

i
~σi · ~σi+1

For p = 2 is Ising, for p = ∞ is XY. F. Liu

and

G. F.

Mazenko,

Phys.

Rev.

B 47,

2866

(1993).

Generally, for arbitrary d, one expects the same dy-

namical exponents of the Ising model, and different (p-

dependent) scaling functions. We will see that in d = 1

things are different.
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T = 0

Simulations

However, numerical simulations in d = 1, T = 0, give:
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For p > 4 there is a length growing with z = 4, as for

p = ∞.
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Why ?
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So there is pc = 4 such that:

• for p ≤ pc textures are destroyed and an Ising-like

behavior sets in, with z = 2 and dynamical scaling

• for p > pc textures are stable and an XY-like behavior

sets in, with violation of dynamical scaling
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Can we say something more (for p ≤ pc) ?

For p ≤ pc the model is equivalent to the Ising model.

- For p = 4 it is trivial

n=4

n=3 n=2

n=1

α

β

H [σ] = −J
∑

i
σα

i σα
i+1 − J

∑

i
σβ

i σβ
i+1

Two non-interacting Ising models.
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- For p = 3 it is more subtle.

Consider the correlation function G(r, t) = 〈~σi(t) ·

~σi+r(t)〉 for instance. We can show that

G(r, t) =
9

2
GP (r, t) −

1

2

exactly, where GP (r, t) is the single phase correlation

function of the 3-states 1d Potts model. This quantity

was computed exacly by Sire and Majumdar yielding C. Sire

and S.

N. Ma-

jumdar,

PRL

74,

4321

(1995).

GP (r, t) =
2

9
GI(r, t) +

1

9

where GI(r, t) is the correlation function of the Ising

model (with a global conservation law, which is irrele-

vant). Then

G(r, t) ≡ GI(r, t).
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T > 0 (before equilibration)
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Conclusions

• Dynamics of the clock model in d = 1 is rich and dif-

ferent from the case d > 1 where same exponents are

expected for all p with p-dependent scaling functions.

• Two radically different behaviors crossing pc = 4.

• For p ≤ pc the model is equivalent to the Ising model:

Domains dynamics and scaling with the same expo-

nents and same scaling functions.

• For p > pc a behavior similar to the XY model:

Texture dynamics, two characteristic lengths grow-

ing with different exponents, violations of dynamical

scaling.

• Crossover structure for T > 0.

• Possibly, something similar can happen in other sys-

tems with N = d+1 where extended defects without

core analogous to textures are expected.


