Dual Superconductivity in G₂ group

$\begin{array}{ccc} \text{G. Cossu}^{1,2} & \text{M. D'Elia}^{2,3} & \text{A. Di Giacomo}^{2,5} \\ & \text{B. Lucini}^4 & \text{C. Pica}^{2,5} \end{array}$

¹Scuola Normale Superiore, Pisa

²Istituto Nazionale di Fisica Nucleare (INFN)

³Dipartimento di Fisica, Università di Genova

⁴Department of Physics, University of Wales, Swansea

⁵Dipartimento di Fisica, Università di Pisa

XIII Workshop on Statistical Mechanics and Non Perturbative Field Theory, Bari, 2006

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Outline

Motivation and background

Testing Dual Superconductor Picture of Confinement G_2 group

Contribution

Simulating G_2 group Results on thermodynamics ρ operator Summary and outlook

Outline

Motivation and background

Testing Dual Superconductor Picture of Confinement

G₂ group

Contribution

Simulating G_2 group Results on thermodynamics ρ operator Summary and outlook

Models of confinement dynamics

- Center Vortexes (Vortex free energy)
- Dual Superconductor Picture (DSP) (Monopole Condensation)
- Testing the DSP
 - Series of Papers : "Colour confinement and dual superconductivity of the vacuum, I-II-III-IV"
 - Proposal of an order parameter carring magnetic charge: μ
- G_2 has a trivial center \Rightarrow No center vortexes
- G₂ group admits Monopole Solutions

Models of confinement dynamics

- Center Vortexes (Vortex free energy)
- Dual Superconductor Picture (DSP) (Monopole Condensation)
- Testing the DSP
 - Series of Papers : "Colour confinement and dual superconductivity of the vacuum, I-II-III-IV"
 - Proposal of an order parameter carring magnetic charge: μ
- G_2 has a trivial center \Rightarrow No center vortexes
- G₂ group admits Monopole Solutions

Models of confinement dynamics

- Center Vortexes (Vortex free energy)
- Dual Superconductor Picture (DSP) (Monopole Condensation)
- Testing the DSP
 - Series of Papers : "Colour confinement and dual superconductivity of the vacuum, I-II-III-IV"
 - Proposal of an order parameter carring magnetic charge: μ
- G_2 has a trivial center \Rightarrow No center vortexes
- G₂ group admits Monopole Solutions

Dual Superconductor Picture

- Superconductors: electric charges condensation (Cooper pairs)
- Dual mechanism: condensation of magnetic charges (Monopoles, defined through Abelian Projection)
 - \Rightarrow electric field confined in strings
 - \Rightarrow linearly rising potential

DSP Vacuum state

Condensate of magnetically charged fields confining electrically charged particles (quarks)

・ロット (雪) (日) (日)

Testing DSP with the magnetic operator μ

Strategy

- Construct an operator carrying nonzero magnetic charge
- Evaluate its v.e.v. ← candidate order parameter

Operator

- $\langle \mu \rangle$ constructed adding a monopole field in the t_0 time-slice
- Direct measurement of $\langle \mu \rangle$ quite noisy
- Numerically more convenient the susceptibility:

$$\rho = \frac{\partial}{\partial\beta} \ln \langle \mu \rangle = \langle S \rangle_S - \langle S_M \rangle_{S_M}$$

Testing DSP with the magnetic operator μ

Strategy

- Construct an operator carrying nonzero magnetic charge
- Evaluate its v.e.v. ← candidate order parameter

Operator

- $\langle \mu \rangle$ constructed adding a monopole field in the t_0 time-slice
- Direct measurement of $\langle \mu \rangle$ quite noisy
- Numerically more convenient the susceptibility:

$$ho = rac{\partial}{\partialeta} \ln\langle\mu
angle = \langle m{S}
angle_{m{S}} - \langle m{S}_{m{M}}
angle_{m{S}_{m{M}}}$$

Outline

Motivation and background

Testing Dual Superconductor Picture of Confinement G_2 group

Contribution

Simulating G_2 group Results on thermodynamics ρ operator Summary and outlook

G₂ group: basic facts

Definition

- Exceptional G₂ group: AUTOMORPH. of the OCTONIONS
- Natural construction as a subgroup of SO(7) (21 gen.) +

$$\mathbf{v} = \Omega \mathbf{v} \qquad \mathbf{v}_k = \Omega_{ji} T_{ijk}$$

(T_{ijk} tot. antisymm.). 7 relations \rightarrow 14 generators

Center

- G₂ group has real representation
- $SU(3) \subset G_2 \rightarrow \mathcal{C}(G_2) \subset \mathcal{C}(SU(3)) = \mathbb{Z}_3$
- Reality implies center of $G_2 = \{1\}$ trivial

A D > A P > A D > A D >

G₂ topology

Interesting homotopy groups

- Maximal Abelian (Cartan) subgroup: U(1)² as in SU(3)
- 't Hooft-Polyakov monopoles

$$\Pi_2(G_2/U(1)^2) = \mathbb{Z} \times \mathbb{Z}$$

Twist-sectors ('t Hooft flux vortices if Π₁ isn't trivial)

$$\begin{split} \Pi_1(G_2/\mathcal{C}(G_2)) &= \Pi_1(G_2/\mathbb{1}) = \mathbb{1} \\ \Pi_1(SU(3)/\mathbb{Z}_3) &= \mathbb{Z}_3 \end{split}$$

 Absence of the center is not essential for twists sectors, see SO(3) case

Outline

Motivation and background

Testing Dual Superconductor Picture of Confinement G_2 group

Contribution

Simulating G₂ group

Results on thermodynamics ρ operator Summary and outlook

Simulations

- Lot of work on this subject by the Bern group (P. Minkowski, U.-J. Wiese, M.Pepe and K. Holland)
- Our work deals with extensive finite temperature simulations at different spatial volumes $N_s = 12, 16, 20, 24, 32$ with $N_t = 6$ and a 16^4 lattice (zero temperature).
- Measurements: operator ρ, Polyakov Loop (high statistics in the 3 smaller lattices)
- Update: Cabibbo-Marinari on 3 *SU*(2) subgroups and successive random gauge transformations.
- Fast code using directly SSE2 assembly instructions (matrix-multiplication core) and only real algebra

Outline

Motivation and background

Testing Dual Superconductor Picture of Confinement G_2 group

Contribution

Simulating *G*₂ group Results on thermodynamics

 ρ operator Summary and outlook

Plaquette Susceptibility

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣

INFN

Polyakov Loop Histogram Plot - Lattice 6×20^3

Pol. Loop Susceptibility - Scaling Assuming First Order

INFN

Comparison with T = 0 simulations

・ロット 白マット 中マット

Outline

Motivation and background

Testing Dual Superconductor Picture of Confinement G_2 group

Contribution

Simulating G₂ group Results on thermodynamics

ρ operator

Summary and outlook

INFN

Global view of results

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

"Peaks" for different lattice sizes (12,16,20,24)

Outline

Motivation and background

Testing Dual Superconductor Picture of Confinement G_2 group

Contribution

Simulating G_2 group Results on thermodynamics ρ operator Summary and outlook

Results

- Our aim was to give a confinement criterion by using $\langle \mu
 angle$
- The operator is not blind to the bulk transition
- This precludes any direct scaling analysis using monopole operator.
- Moreover the operator should be volume indepentent before the physical transition.
- Our data clearly show a dip at the transition point as expected but the bulk transition obscurates the key features so...

What is to be done?

- A possible solution for the bulk transition problem: suppress the lattice artifacts (Z₂ monopoles) or
- consistently subtract the unphysical background: show the correct behavoiur of the magnetic operator and its scaling in the weak coupling region above bulk transition. Most promising

Thank you!

What is to be done?

- A possible solution for the bulk transition problem: suppress the lattice artifacts (Z₂ monopoles) or
- consistently subtract the unphysical background: show the correct behavoiur of the magnetic operator and its scaling in the weak coupling region above bulk transition. Most promising

Thank you!

