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1 – MOTIVATION

Order-disorder transitions are common to a wide class of models in Statistical Me-
chanics and Quantum Field Theory (Ising model, 3d XY model, Heisenberg model, . . . )

They are usually associated to the spontaneous breaking of a dual symmetry induced
by the condensation of dual topological variables (e.g. kinks in the Ising model)
Correlation functions of the topological variables can be used as disorder parameters
for the phase transition.

Dual variables are non local when written in terms of the original variables and their
correlation functions are usually expressed as ratios of partition functions
That makes their numerical study quite challenging.

We propose a new method to overcome the problem and apply it to the study of
confinement in 4d compact U(1) gauge theory



Color confinement is usually believed to be related to the condensation of topological
excitations: models can be constructed accordingly, which place the confinement-
deconfinement transition into the general scenario of order-disorder transitions.

One appealing model is based on dual superconductivity of the QCD vacuum and
relates confinement to the breaking of an abelian dual symmetry induced by the con-
densation of magnetic monopoles (G. ’t Hooft, 1975; S. Mandelstam, 1976; G. Parisi, 1975).

The definition of disorder parameters in that scenario has been studied since long.
In the present work we will apply our method to the parameter 〈µ〉 developed by the
Pisa group and successfully tested both in pure gauge and full QCD
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A. Di Giacomo, B. Lucini, L. Montesi, G. Paffuti, PRD 61, 034503-034504 (2000)
J. M. Carmona et al. PRD 64, 114507 (2001). J. M. Carmona et al. PRD 66, 011503 (2002)
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Analogous parameters have been studied by different groups
P. Cea, L. Cosmai and A. D. Polosa, PLB 392 (1997) 177; P. Cea and L. Cosmai, JHEP 0111 (2001) 064.
M.N. Chernodub, M.I. Polikarpov, A.I. Veselov, PLB 399, 267 (1997);
J. Frohlich, P.A. Marchetti, PRD 64, 014505 (2001).



2 – DUAL SUPERCONDUCTIVITY IN 4d COMPACT U(1) GAUGE THEORY

The model is defined, in the Wilson formulation, as follows

Z(β) =

∫
[dθ]e−βS ; S =

∑
−→x,t,(µν)

(1− cos(θµν(~x, t))

θµν is the phase of the plaquette in the µ− ν plane starting from the lattice site (~x, t)

It has a critical point at βc ' 1.01, which is usually believed to be weak first order and
separates a disordered phase (β < βc), with condensation of magnetic monopoles
and confinement of electric charges (dual superconductive phase), from a Coulomb
phase where condensation of magnetic charge disappears.



The disorder parameter 〈µ〉 is the expectation value of an operator which creates a
magnetic monopole by shifting the quantum fields by the monopole vector potential

µ(~y, t0) = exp

[
i
1

e

∫
d3x ~E(~x, t0)~b(~x− ~y)

]

it can be discretized on the lattice follows

µ = eβ
∑
~x,i(cos(θ0i(~x,t0)−bi(~x−~y))−cos(θ0i(~x,t0))) ≡ e−β∆S

so that

〈µ〉 =

∫
(DU) e−β(S+∆S)

∫
(DU) e−βS

=

∫
(DU) e−βS̃∫
(DU) e−βS

≡ Z̃(β)

Z(β)
,

S̃ =
∑

−→x,t6=t0,(µν)

(1− cos(θµν)) +
∑

~x,i

(1− cos(θ0i(~x, t0)− bi(~x− ~y))) ≡ S + ∆S



The numerical difficulties encountered in the numerical determination of 〈µ〉 can be
ascribed to the poor overlap between the two statistical distributions in configuration
space corresponding to Z and Z̃
µ gets significant contributions only on those configurations having very small sta-
tistical weight. The problem increases with the system size as the two distributions
shrink towards non overlapping delta functions.

A successful way out is to measure susceptibilities from which 〈µ〉 can eventually be
reconstructed (L. Del Debbio, A. Di Giacomo, G. Paffuti, PLB 349, 513 (1995). A. Di Giacomo, G. Paffuti, PRD
56, 6816 (1997).)

ρ =
d

dβ
ln〈µ〉 = 〈S〉S − 〈S̃〉S̃ ; 〈µ〉 = e

R β
0 ρ(β′)dβ′

While that is enough to test 〈µ〉 as a parameter for confinement, a direct determina-
tion could be useful in contexts like the study of its correlation functions.



3 – THE METHOD

Our proposal is to determine the ratio of partition functions by using intermediate
distribution functions having a reasonable overlap with both statistical ensembles
corresponding to Z and Z̃ . We rewrite the ratio as the product of N distinct ratios:

Z̃

Z
=

ZN
ZN−1

ZN−1

ZN−2

. . .
Z1

Z0

where ZN ≡ Z̃ , Z0 ≡ Z and

Zk ≡
∫

[dθ]e−βSk ; Sk ≡
N − k
N

S +
k

N
S̃ .

The idea is to compute each single ratio by a different Monte Carlo simulation: the dif-
ficulty of dealing withN simulations should be greatly compensated by the increased
overlap in the distributions corresponding to each couple of partition functions.

Boundary conditions are chosen in a consistent equal way for all partition functions



As a second step to further improve the overlap, we compute each single ratio by
using an intermediate distribution

Zk+1

Zk
=
〈exp (−β∆S/2N)〉k+1/2

〈exp (β∆S/2N)〉k+1/2

where each expectation value is computed with the action

Sk+1/2 ≡ (1− (k + 1/2)/N) S + ((k + 1/2)/N) S̃

Our method of rewriting the original ratio Z̃/Z as a product of intermediate ratio
resembles very closely the snake algorithm developed for the computation of the
’t Hooft loop (Ph. de Forcrand, M. D’Elia, M. Pepe, PRL 86, 1438 (2001)), but differs from it in the
choice of the intermediate partition functions.
Our choice is not particularly related to the model or topological excitations taken
into account, so that it can be applied in a straightforward way to a wider class of
similar problems.



4 – NUMERICAL TESTS

We compare the naı̈ve computation of 〈µ〉 with our method for N = 1:

• β = 0.8, 44 lattice, 107 measurements for both cases

• 〈µ〉 = 1.14(18) with the naı̈ve computation and 〈µ〉 = 0.868(3) with our method
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In the naı̈ve computation most of the signal comes from regions which are badly
sampled: on larger lattices that makes the determination unfeasible.



We show in the following how results depend on the choice of N
〈µ〉 has been determined on a lattice 164 with free b.c. at β = 0.8: for each deter-
mination a whole statistics of N ×Nmeas = 3.2 · 105 measurements has been used.
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intermediate ratios are strongly dependent on N whilst 〈µ〉 is not, thus confirming
the absence of uncontrolled systematic errors.
The statistical error rapidly changes for small values of N , but then stabilizes, indi-
cating that a value N ∼ O(10) saturates the improvement.



5 – NUMERICAL APPLICATIONS

We have studied the thermodynamical limit of 〈µ〉 with different boundary conditions
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In the confined phase, a fit according to 〈µ〉 = A + B/L gives A = 0.945(6) and
B = 0.31(6) with free b.c. (χ̃2 = 0.5) and A = 0.940(6) and B = 0.2(6) with
periodic b.c. (χ̃2 = 0.8): 〈µ〉 has a well defined thermodynamical limit which is
independent of the boundary conditions chosen.
In the deconfined phase 〈µ〉 goes to zero exponentially with L, in agreement with
magnetic charge superselection and with the behavior of the susceptibility ρ.



We have also performed, in the confined phase, checks of the expected cluster prop-
erty for the correlation functions of the disorder parameter

O O2 O4

〈µ(~0, 0)〉 0.439(12) 0.193(11) 0.037(4)

〈µ̄(~0, t)µ(~0, 0)〉 0.182(7) 0.033(3)

〈µ̄(~z, 0)µ(~0, 0)〉 0.183(12) 0.033(4)

〈µ̄(~z, 0)µ̄(~0, t)µ(~z, t)µ(~0, 0)〉 0.037(6)

We show in the table a determination at β = 0.8 on a 164 lattice of 〈µ〉, of its spatial
and temporal 2-point function (second and third row) and of its mixed 4-point function
(last row), with t = 8 and ~z = (0, 0, 8). All measurements are compatible with the
hypothesis that the correlators are already in their asymptotic regime governed by
cluster property.



Finite Size Scaling analysis around the phase transition

The critical behaviour of the disorder parameter expected at the phase transition,
〈µ〉 ' τ δ, translates in the following ansätz for the f.s.s. behaviour of 〈µ〉

〈µ〉 = L−
δ
ν φ
(
(βc − β)L1/ν

)
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Fixing the known value of βc = 1.011 and ν = 1/d as appropriate for a weak first
order transition, we obtain a reasonable scaling with δ ∼ 2.3



6 – CONCLUSIONS AND PERSPECTIVES

• We have proposed a new method for the computation of disorder parameters and
applied it to the parameter for dual superconductivity in 4d compact U(1) gauge
theory

• We have tested our method and used it to study some relevant properties of the
disorder parameter 〈µ〉 and of its correlation functions

• Our method is very general and its formulation permits both an easy adaption to
several similar problems (like the study of order-disorder transitions in statisti-
cal models and of dual superconductivity in non Abelian gauge theories) and the
possibility to easily implement further improvements (like a different choice of the
interpolating actions Sk, for instance not linear in k).


