

PREDICTING OUTCOME IN BREAST CANCER: HOPE, HYPE and PHYSICS

Eytan Domany Dept. of Physics of Complex Systems Weizmann Inst. of Science, Rehovot, ISRAEL

Bari SM&FT, Sept 2006

http://www.weizmann.ac.il/physics/complex/compphys

OUTLINE:

- 1. THE PROBLEM: EARLY-DISCOVERY BREAST CANCER --OUTCOME PREDICTION.
- 2. THE HOPE: GENE EXPRESSION, DNA MICROARRAYS
- 3. HYPE: 70 GENES PREDICT OUTCOME! (ALSO 76, 21, 64,...) OUTCOME SIGNATURE GENES IN BREAST CANCER: IS THERE A UNIQUE SET?
- PHYSICS: HOW MANY BREAST CANCER SAMPLES ARE NEEDED TO PRODUCE A ROBUST PREDICTIVE GENE LIST?
 Probably Approximately Correct (PAC) – ranking

Cancer Death Rates in USA

and ovary are affected by these coding changes

Source: US Mortality Public Use Data Tapes 1960-2001, US Mortality Volumes 1930-1959,

National Center for Health Statistics, Centers for Disease Control and Prevention, 2004. American Cancer Society, Surveillance Research, 2005

Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancers of the liver, lung & bronchus, and colon & rectum are affected by these coding changes.

Source: US Mortality Public Use Data Tapes 1960-2001, US Mortality Volumes 1930-1959,

National Center for Health Statistics, Centers for Disease Control and Prevention, 2004.

American Cancer Society, Surveillance Research, 2005

ABOUT 600,000 DEATHS PER YEAR IN THE USA

Age-Adjusted Cancer Death Rates,* Males by Site, US, 1930-2001

BREAST CANCER:

DEATH RATE 30/100,000 per year

INCIDENCE: ABOUT 1 OUT OF 9 WOMEN AFFECTED.

EARLY DISCOVERY: SMALL TUMOR (< 2cm), NO SPREADING TO LYMPH NODES LOWEST GRADE, STAGE

TREATMENT:

SURGICAL REMOVAL OF TUMOR + RADIOTHERAPY + HORMONAL THERAPY (IF ER+)

CHEMOTHERAPY ???

NO CHEMOTHERAPY IF PATIENT IS LOW RISK:

Low risk ^a	lode negative AND all of the following	features: ST. GALLEN
	pT ≤2 cm, AND	
	Grade 1, ^b AND	
	Absence of peritumoral vascular invasion	on,° AND
	HER2/neu gene neither overexpressed n amplified, ^d AND	ıor
	Age ≥35 years	
Minimal/low riskt	 ER- and/or PgR-positive, and all of the following features: pT‡ ≤ 2 cm, and Grade 1§, and Age∥ ≥ 35 years 	NIH

NOTTINGHAM

NPI = (0.2 x tumor diameter in cms) + lymph node stage + tumour grade < 3.4

HOW WELL DO THESE CRITERIA WORK?

Can we do better in identifying patients at high risk – and avoid chemotherapy for low-risk?

OUTLINE:

1. THE PROBLEM: EARLY-DISCOVERY BREAST CANCER --OUTCOME PREDICTION.

2. THE HOPE: GENE EXPRESSION, DNA MICROARRAYS

- 3. 70 GENES PREDICT OUTCOME! (ALSO 76, 21, 64,...) OUTCOME SIGNATURE GENES IN BREAST CANCER: IS THERE A UNIQUE SET?
- 4. HOW MANY BREAST CANCER SAMPLES ARE NEEDED TO PRODUCE A ROBUST PREDICTIVE GENE LIST?
 Probably Approximately Correct (PAC) – ranking

AIM: Identifying patients at high risk

METHOD: Measure gene expression profile of primary tumor and find signature of bad outcome tumors

THE BASIC PARADIGM: GENE EXPRESSION REFLECTS STATE

THE STATE OF A CELL AND THE ONGOING

BIOLOGICAL PROCESSES ARE REFLECTED

IN ITS EXPRESSION PROFILE:

THE EXPRESSION LEVEL OF EACH GENE.

(HUMAN GENOME – 40,000? 24,000? NUMBERS)

HOW DO WE MEASURE THEM?

MEASURING GENE EXPRESSION PROFILE

WHEN A PARTICULAR GENE IS EXPRESSED THE CONCENTRATIONS OF ITS CORRESPONDING MESSENGER RNA AND PROTEIN ARE HIGH.

A DNA-CHIP MEASURES CONCENTRATIONS OF THOUSANDS OF DIFFERENT

MESSENGER RNA

LATEST AFFYCHIP: U133P2 – 54,675 (probesets)

Microsoft Excel - data.xls																
R	Eile Edit	t <u>V</u> iev	v <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow	Help									T
	- 1 🚅 🔲 I	a la	3 🖪 🕫	X 🗈 🛙	🙉 🗸 🛷 🛛 🖌		🦾 Σ 🗕	1 Z1 M	<i></i> 100%	- 2						
-			8 L94 V	00 -12 6			™eee ~ 2			· · · ·						
Ar	rial			BI	<u>n</u> ≣ ≣		ů ▶¶ + 9	6% ,	.00 +.0 t	▝▝▛▕▕▁▁▝	🕐 - 🗛 ·	• •				
皆	a ta ta i	2 🗞) 🖪 🖻 🔤	Reply with	⊆hanges E	d Review									
	A1	-	fx	AffyID				•								
		Δ	,	B	0	D	F	F	G	Н			ĸ		M	_
1	AffvID			00450UR2	2 00485UR2	00823UR2	- 00838UR2	A5371HR2	C0139KR2	200300BR2	02184AR2	02815AR1	03283AR1	- 03519AR2	03531AR2 (03
2	200000 :	s at		369.3	3 383.9	477.5	330.9	322.8	348.6	557.1	380.3	529.8	257.5	253.1	596.6	
3	200001	at		633.8	806.2	740.7	915.6	1244.1	678.7	1748.2	1217.6	1085.4	1022.7	1364	1152.9	_
4	200002	at		3400.8	3007.2	3133.7	4032.3	2521.8	1906.7	3503.5	3218.3	2724	3775.7	2550.4	2944.3	
5	200003	s_at		4131.6	6 4439.9	4445.1	4878.7	3257.8	2699.6	5252.4	4450.6	4335.1	4861.3	3428.2	3600.5	
6	200004_;	at		1612.1	1310.8	1211.7	2241.2	2127.4	1525.4	2193	2099.9	1896.4	1750.1	2170.2	1889.7	
-7	200005_:	at		1113.7	/ 1323	731.8	1265.7	555.5	482.9	1634.7	818.3	916	1337.3	850.1	1073.8	
8	200006_:	at		1151.1	978.8	1549.7	1632.9	1448	1855.8	920.4	1627.6	1681	2119.9	1973.3	1916.9	
9	200007_:	at		1051.6	6 988.7	1363.4	1131.3	1716.2	1323.7	1824.4	1646	1862.5	1679.2	1479.7	1691.6	
10	200008_:	s_at		133	3 294.6	347.2	218.1	782.7	558.9	627.5	753.7	771.3	922	679.3	1088.2	
11	200009_:	at		521.5	5 904.3	1222.7	820.5	1518.1	1385.1	1888.7	1416.5	1501.9	1691.8	1532.7	1888.8	
12	200010_;	at		1815.9	9 1483.8	2425.7	2672.4	2578.7	2045.3	2739.6	3015.2	2424.3	3916	1608.3	2970.5	
13	3 200011_s	s_at		744.8	3 483.4	451.3	555.3	1018.7	279.1	567.4	438.9	452.2	489.8	718.3	539.6	
14	200012_:	x_at		1931.5	5 3217.9	3720.1	2565.9	3089.1	3140.6	3693.1	4154	4533.5	4471.1	2629.5	3260.2	
15	200013_;	at		3400.9	3817.9	4032.6	4113.5	2621	2710.6	4867.8	3678.9	3406.5	3718.5	2806.5	3146.7	
16	200014_	s_at		509	9 456.8	340.9	625.5	411.8	466.6	411.6	488.3	454.8	651.1	709.6	733.3	
17	200015_:	s_at		1323.1	1181.6	1014.6	1117	830	599.2	1338.3	1115.3	1296.2	1199.6	982.6	977.4	
18	200016_;	x_at		2477.3	3 2920.4	2832.4	3546.8	3128.6	1770.1	4979.7	3707.6	2895.6	3898.4	2332.7	3923.2	
19	200017_;	at		2997.7	2231.5	3292.5	3659.5	3204.1	2507.2	3608.9	4830.1	4017	4477.7	3380.7	3762.4	
20	200018_;	at		4566.5	5 4903	3459	4152.2	3491.4	3507.9	4181.3	4629.1	4723	4170.8	3373.4	4067.7	
21	200019_:	s_at		5019.8	3 4420.3	3201.1	4148.2	2785.2	3126.8	4217.6	3047	2637.9	3361.3	2836.8	3328.3	
22	200020_;	at		627.2	2 449	593.8	589.6	497.4	340.5	426.9	490.1	510.4	698.8	658.5	669.5	
23	200021_;	at		8773.2	2 8539.6	6521.3	6543.2	5513.6	3511.7	5143.7	6145.4	5306.4	5737.9	4173.5	4557.7	
24	200022_;	at		3300.9	9 4028.1	3490.3	4832.2	2944.5	2436.4	4355.5	3040.1	2582.5	3288.9	2736.2	3520.8	
25	200023_	s_at		1094.8	3 1004.9	781.1	1098.5	1175.4	830.9	1549.3	1121.4	1429	1250.7	819.4	1216.6	
26	200024_;	at		1075.3	3 1738.5	1815.3	2710.2	2240.3	1712.6	3305.8	3919.4	3311.2	4087.6	1907.6	2882.6	
27	200025_	s_at		4743.7	5353	3494.5	4986.7	3120.9	3215.7	4597.4	4309	4109.6	5018.3	3388.1	3753.5	
28	200026_;	at		5905.2	2 7854.7	4420.4	6630.9	4533.3	3027.7	4973.1	5298.4	4618.8	5537.5	3676.1	4503	
29	200027_	at		1288.3	3 1120.6	1017.6	1061.2	1566.3	622.4	1409.6	802	935.5	773.4	1133.7	1970.6	
30	200028_	s_at		657.2	2 516	644.9	554.1	639.2	831.7	676.5	716.4	588.7	711.8	426.6	880.6	
31	200029_:	at		4631.1	5165.4	5222.9	4355.2	2452.8	3318.1	3846.4	3363.2	3675.6	4674	3130.1	2966.1	
32	200030_	s_at		907.1	912.7	970.4	1469.5	2630.1	2293.7	1636.1	1970.7	1910.9	2227	1410	2604.2	
33	2000031	a at		6638-1		E AEQ E	E 5825 3	E/01 Q	/10Q Q	6883	6549.4	5618.8	6227.1	1650	1759 2	

VISUALIZATION: HOW DOES ONE SHOW SO MANY NUMBERS? COLOR CODE: REPRESENT NUMBERS BY COLORS

-0.80	-0.16	-0.55	-0.33	0.00	0.29	-0.18	1.41	-0.37	-0.26
-0.56	-0.56	-0.56	-0.56	-0.55	0.09	-0.56	0.99	2.10	-0.56
-0.26	-0.34	-0.68	-0.68	-0.31	-0.26	-0.68	0.72	-0.68	-0.68
-0.65	0.09	-0.65	-0.65	-0.65	-0.03	-0.65	0.92	-0.65	-0.65
1.77	-0.90	-0.90	1.71	-0.68	1.69	-0.90	1.60	1.37	0.41
1.18	-1.00	-0.52	1.27	-1.06	1.12	-1.35	0.97	1.08	0.54
-0.63	0.30	-0.35	-0.70	-0.70	-0.28	-0.70	1.09	-0.49	-0.70
-0.55	0.24	-0.55	-0.55	-0.53	-0.32	-0.55	0.54	2.20	-0.38
-0.76	-0.76	-0.37	-0.76	-0.40	0.15	-0.40	1.06	-0.56	-0.42
-0.35	0.44	-0.75	-0.50	0.22	-0.24	-0.41	0.58	2.13	-0.11
-0.67	-0.45	-0.67	-0.67	-0.46	-0.67	-0.67	0.13	2.29	-0.02
-0.37	-0.25	-0.78	-0.18	0.07	0.22	-0.14	0.98	-0.05	-0.23
-0.85	-0.59	-0.85	-0.44	-0.30	0.24	-0.31	1.06	-0.80	-0.42
-0.45	-0.45	-0.45	-0.45	-0.45	-0.45	-0.45	0.68	-0.45	-0.45
-0.34	0.93	1.14	0.62	1.07	0.03	-1.14	0.62	0.73	-0.14
-0.88	-0.09	-0.49	-0.56	-0.31	-0.31	-0.88	1.09	-0.55	-0.83
-0.06	-0.12	-0.76	-0.44	-0.18	-0.05	-0.62	1.00	-0.52	-0.39
1.47	-1.50	-0.70	1.49	-0.93	1.39	0.23	1.32	1.14	0.83
-0.49	0.79	-0.49	-0.49	-0.49	-0.49	-0.49	0.84	-0.49	-0.49
-0.61	-0.62	-0.16	-0.74	-0.68	0.22	-0.31	0.65	-0.08	-0.74

VISUALIZATION: HOW DOES ONE SHOW SO MANY NUMBERS? COLOR CODE: REPRESENT NUMBERS BY COLORS

ſ	-0.8	-0.16	-0.55	-0.33	0	0.29	-0.18	1.41	-0.37	-0.26
2	-0.56	-0.56	-0.56	-0.56	-0.55	0.09	-0.56	0.99	2.1	-0.56 –
	-0.26	-0.34	-0.68	-0.68	-0.31	-0.26	-0.68	0.72	-0.68	-0.68
4	-0.65	0.09	-0.65	-0.65	-0.65	-0.03	-0.65	0.92	-0.65	-0.65 —
	1.77	-0.9	-0.9	1.71	-0.68	1.69	-0.9	1.6	1.37	0.41
6	1.18	-1	-0.52	1.27	-1.06	1.12	-1.35	0.97	1.08	0.54 –
	-0.63	0.3	-0.35	-0.7	-0.7	-0.28	-0.7	1.09	-0.49	-0.7
8	-0.55	0.24	-0.55	-0.55	-0.53	-0.32	-0.55	0.54	2.2	-0.38 —
	-0.76	-0.76	-0.37	-0.76	-0.4	0.15	-0.4	1.06	-0.56	-0.42
10	-0.35	0.44	-0.75	-0.5	0.22	-0.24	-0.41	0.58	2.13	-0.11 –
	-0.67	-0.45	-0.67	-0.67	-0.46	-0.67	-0.67	0.13	2.29	-0.02
12	-0.37	-0.25	-0.78	-0.18	0.07	0.22	-0.14	0.98	-0.05	-0.23 –
	-0.85	-0.59	-0.85	-0.44	-0.3	0.24	-0.31	1.06	-0.8	-0.42
14	-0.45	-0.45	-0.45	-0.45	-0.45	-0.45	-0.45	0.68	-0.45	-0.45 —
	-0.34	0.93	1.14	0.62	1.07	0.03	-1.14	0.62	0.73	-0.14
16	-0.88	-0.09	-0.49	-0.56	-0.31	-0.31	-0.88	1.09	-0.55	-0.83 –
	-0.06	-0.12	-0.76	-0.44	-0.18	-0.05	-0.62	1	-0.52	-0.39
18	1.47	-1.5	-0.7	1.49	-0.93	1.39	0.23	1.32	1.14	0.83 —
	-0.49	0.79	-0.49	-0.49	-0.49	-0.49	-0.49	0.84	-0.49	-0.49
20	-0.61	-0.62	-0.16	-0.74	-0.68	0.22	-0.31	0.65	-0.08	-0.74 –
	1	2	3	4	5	6	7	8	9	10

COLON CANCER DATA:

EACH PATIENT IS DESCRIBED BY 30,000 NUMBERS: ITS EXPRESSION PROFILE

COLON CANCER DATA: $E_{ij} = \text{EXPRESSION LEVEL OF GENE } i$ IN SAMPLE j

Expression 1-99% EACIE ENT**IS DESCRIBED BY 30,000** RSETS EXPRESSION PROFILE NEN gene 400

Sample # 127

COLON CANCER DATA: $E_{ij} = \text{EXPRESSION LEVEL OF GENE } i$ IN SAMPLE j

Sample # 127-

OUTLINE:

- 1. THE PROBLEM: EARLY-DISCOVERY BREAST CANCER --OUTCOME PREDICTION.
- 2. THE HOPE: GENE EXPRESSION, DNA MICROARRAYS
- 3. 70 GENES PREDICT OUTCOME! (ALSO 76, 21, 64,...)
 OUTCOME SIGNATURE GENES IN BREAST CANCER: IS THERE A UNIQUE SET?
- 4. HOW MANY BREAST CANCER SAMPLES ARE NEEDED TO PRODUCE A ROBUST PREDICTIVE GENE LIST?
 Probably Approximately Correct (PAC) – ranking

Flood of signatures

Research article Gene expression profiling spares early breast ca from adjuvant therapy: derived and validated in t population-based cohorts

Available online http://breast-ca

Yudi Pawitan¹, Judith Bjöhle², Lukas Amler³, Anna-Lena Borg², Suzanne Xia Han⁴, Lars Holmberg⁵, Fei Huang⁴, Sigrid Klaar², Edison T Liu⁶, Lance Ale Sa

Gene Expression Signature of Fibroblast Seru Response Predicts Human Cancer Progressior Similarities between Tumors and Wounds

Howard Y. Chang^{1,2}, Julie B. Sneddon², Ash A. Alizadeh^{2x1}, Ruchira Sood², Rob B. West³, Kelli Montgomery³, Jen-Tsan Chi², Matt van de Rijn³, David Botstein^{4x2}, Patrick O. Brown^{2,5*}

Laura J. van 't Veer*†, Hongyue Dai†‡, Marc J. van de Vijver*†, ⁶, Lance ⁶, Lance <u>PLOS BIOL</u> George J. Schreiber‡, Ron M. Kerkhoven*, Chris Roberts‡,

Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival

Howard Y. Chang^{a,b,c}, Dimitry S. A. Nuyten^{c,d,e}, Julie B. Sneddon^b, Trevor Hastie^f, Robert Tibshirani^f, Therese Sørlie^{b,g}, Hongyue Dai^{h,I}, Yudong D. He^{h,I}, Laura J. van't Veer^{d,I}, Harry Bartelink^e, Matt van de Rijn^J, Patrick O. Brown^{b,C,I}, and Marc J. van de Vijver^{d,I}

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Gene-expression profiles to predict dis lymph-node-negative primary breast (

Yixin Wang, Jan G M Klijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look, Fei Yang, Dmitri T Marion E Meijer-van Gelder, Jack Yu, Tim Jatkoe, Els M J J Berns, David Atkins, John A Foeker

A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer

Soonmyung Paik, M.D., Steven Shak, M.D., Gong Tang, Ph.D., Chungyeul Kim, M.D., Joffre Baker, Ph.D., Maureen Cronin, Ph.D., Frederick L. Baehner, M.D., Michael G. Walker, Ph.D., Drew Watson, Ph.D., Taesung Park, Ph.D., William Hiller, H.T., Edwin R. Fisher, M.D., D. Lawrence Wickerham, M.D., John Bryant, Ph.D., and Norman Wolmark, M.D.

Prepare Training Set for outcome prediction:

Predicting Outcome with Expression Profiling

Step I - Grouping

Divide the samples into Training and

Step II - Feature selection Find *the* subset of N_{TOP} predictive genes

Feature Selection

Selecting a short list of predictive genes Typically ~ 100 samples for training, hence use ~ 100 genes (out of ~ 10,000 on chip)

Why short list?

 Avoid overtraining/reduce generalization error
 Gain insight into the biological mechanism underlying outcome.

3. Less genes – simpler chip, easier prediction.

How? Two steps:

- **Rank** genes according to their individual predictive power (correlation with outcome).
- Select the *N_{TOP}* highest ranked genes.

Predicting Outcome with Expression Profiling

Step I - Grouping

Divide the samples into Training and

Step II - Feature selection Find *the* subset of N_{TOP} predictive genes

Step III - classification rule

Develop prediction rule using the selected genes Determine N_{TOP}

Van't Veer's Analysis

- 1. Rank the genes according to their correlation to disease outcome.
- 2. Search from the top for the set of genes that has the best performance to predict outcome

Predicting Outcome with Expression Profiling

Step I - Grouping

Divide the samples into Training and

Step II - Feature selection Find *the* subset of N_{TOP} predictive genes

Step III - classification rule

Develop prediction rule using the selected genes Determine N_{TOP}

Step IV – prediction error Check classifier performance

Different Platforms ?

Different Populations of Patients ?

Different Types of Analysis?

- NO!!

Selecting 70 genes: Van't Veer's dataset Nature, 2002

96 breast sporadic tumors

Poor prognosis patients (developed distant metastases Within 5 years)

46

Good prognosis patients (Did not develop distant metastases Within 5 years)

50

5852 genes

Significantly regulated

1. Select 77 patients for training set

 Measure, over the training set, the correlation of each genes' expression levels with outcome
 Rank 5852 genes by correlation, take top 70

Selecting 70 genes: Van't Veer's dataset Nature, 2002

96 breast sporadic tumors

Poor prognosis patients (developed distant metastases Within 5 years)

46

Good prognosis patients (Did not develop distant metastases Within 5 years)

50

5852 genes

Significantly regulated

1. Select 77 patients for training set

Measure, over the training induction of each generic list unduction of each generic list unduction.
 Rank 5852 is this y correlation, take top 70

Many sets of 70 genes can be used to predict time to distance metastasis

Many sets of 70 genes can be used to predict time to distance metastasis

A gene's rank may fluctuate

Step I

- 1. Choose a group of 77 (out of 96) samples (training set).
- 2. Order the genes according their correlation to survival.
- 3. Mark by black lines the top 70 genes.

Step II

- 1. Choose a different training set (new 77 samples).
- 2. Order the genes according their correlation to survival (based on the **new training set**).
- 3. Mark by black lines the top 70 genes of the first training set.
- 4. Do 10 times...

A gene's rank may fluctuate

Step I

1. Choose a group samples (training	of 77 (out of <u>96</u>)	100 -			<u> </u>		<u> </u>	
2. Order the genes correlation to su	according their	200 -					<u> </u>	
3. Mark by black lin	es the top 70	300 -						
genes.	The correlat	tions fl	uctuate		<u> </u>	. =		
	strongly wh	nen me	asured					
Step II	over diffe	rent su	bsets					
 Choose a differ (new 77 sample 	(Training se	ts) of p	atients.					
Order the genes				=				
correlation to sui	rvival (based on th	e 900 -						
new training se	t).	1000				. —		
3. Mark by black lin	nes the top 70	1	23	4	5 6 divisio	7 8 n index	39	10
genes of the firs	t training set.				4191510	in index		
4 Do 10 times								

The problem of ranking

An Example – Race (semi-Marathon)

1000 runners (**NON** professional and at about the **SAME LEVEL**) Each runner can finish the race within 50 - 70 min

Race #1 - February

Tumor Biology:

Possible explanation for moderate and highly fluctuating, noisy correlation values: heterogeneity of the tumors.

To get a robust predictive gene list (one that two experimenters will agree on 50% of the genes) one needs a large number of training samples.

how many?

OUTLINE:

- 1. THE PROBLEM: EARLY-DISCOVERY BREAST CANCER --OUTCOME PREDICTION.
- 2. THE HOPE: GENE EXPRESSION, DNA MICROARRAYS
- 3. 70 GENES PREDICT OUTCOME! (ALSO 76, 21, 64,...) OUTCOME SIGNATURE GENES IN BREAST CANCER: IS THERE A UNIQUE SET?
- HOW MANY BREAST CANCER SAMPLES ARE NEEDED TO PRODUCE A ROBUST PREDICTIVE GENE LIST?
 Probably Approximately Correct (PAC) – ranking

INSTABILITY OF GENE LIST IS CAUSED BY FLUCTUATIONS OF THE RANKING OF INDIVIDUAL GENES.

THE RANKING OF GENE g IS DETERMINED BY C_g , ITS CORRELATION WITH OUTCOME.

FLUCTUATION OF C_g IS CAUSED BY "SAMPLING ERROR" – DUE TO THE FINITE SIZE n OF THE SAMPLE (OF PATIENTS) THAT WAS USED TO CALCULATE C_g

SELECT *n* PATIENTS, CALCULATE C_g ; SELECT $N_{TOP} = \alpha N_g$ GENES WITH HIGHEST $|C_g|$. REPEAT WITH ANOTHER *n* TO GET ANOTHER GENE LIST.

f = OVERLAP OF THE TWO GENE LISTS

AIM: CALCULATE THE PROB. DISTRIBUTION $P_{n,\alpha}(f)$, to answer:

HOW MANY PATIENTS *n* ARE NEEDED TO HAVE

(PAC, Valiant 1984)

 $\operatorname{Prob}\left[f > 1 - \varepsilon\right] > 1 - \delta$

FLUCTUATION OF C_g IS CAUSED BY "SAMPLING ERROR" – DUE TO THE FINITE SIZE n OF THE SAMPLE (OF PATIENTS) THAT WAS USED TO CALCULATE C_g

DISTRIBUTION OF C_g IS HARD TO CALCULATE

FISHER 1915, 1921: THE VARIABLE $Z = \tanh^{-1}(C)$ IS NORMAL DISTRIBUTED: True Z_t $P(Z) = N(Z_t, \sigma_n)$ with variance $\sigma_n^2 = 1/(n-3)$ (under certain assumptions)

Prob [
$$|Z_m| < x$$
] = $P(x, Z, \sigma) = \int_{-x}^{x} dZ_m \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(Z_m - Z)^2}{2\sigma^2})$

$$P_{n,\alpha}(f) = \frac{1}{Nr} \int_{0}^{\infty} dx_{1} dx_{2} \sum_{h,l \in \{0,1\}^{N_{g}}} \left\{ \delta\left(\sum_{j=1}^{N_{g}} h_{j} , N_{TOP}\right) \delta\left(\sum_{j=1}^{N_{g}} l_{j} , N_{TOP}\right) \delta\left(\sum_{j=1}^{N_{g}} h_{j} l_{j} , f N_{TOP}\right) \right\}$$

$$\prod_{j=1}^{N_{g}} \left[(1-h_{j})P(x_{1}, Z_{tj}, \sigma_{n}) + h_{j}(1-P(x_{1}, Z_{tj}, \sigma_{n})) \right] \prod_{k=1}^{N_{g}} \left[(1-l_{k})P(x_{2}, Z_{tk}, \sigma_{n}) + l_{k}(1-P(x_{2}, Z_{tk}, \sigma_{n})) \right] \right\}$$

$$True Z_{tj}$$

$$h_{j} = 1 \text{ IF } |Z_{j}| > x_{1} \quad l_{k} = 1 \text{ IF } |Z_{k}| > x_{2} \quad \delta(n,m) = 1 \text{ if } n=m, 0 \text{ if } \neq$$

STEPS: USE INTEGRAL REPRESENTATION OF δ P(f) REWRITTEN AS

$$P_{n,\alpha}(f) = \frac{1}{Nr} \int_0^\infty dx_1 dx_2 \int_{-\pi}^{\pi} \frac{dy dz dw}{(2\pi)^3} \exp\left(-N_g F\right),$$

where

$$F(x_1, x_2, y, x, w; f) = -i(1 - \alpha)y - i(1 - \alpha)z - i(1 - \alpha f)w - 2\int_0^\infty q(Z)dZ\ln(A(x_1, x_2, y, z, w, Z))).$$

(saddle-point integration, expansion in $1/N_g$)

$$P_{n,\alpha}(f) = \frac{1}{\sqrt{2\pi}\Sigma_n} e^{-\frac{(f-f_n^*)^2}{2\Sigma_n^2}}.$$

derived from data

depends on σ^2

Distribution of the

TRUE Z_t (normal,

with variance V_t)

AIM: CALCULATE THE PROB. DISTRIBUTION $P_{n,\alpha}(f)$

HOW MANY PATIENTS ARE NEEDED TO HAVE $f_n^* = 0.5$ (typical f)??

Prob[f > 0.5] = 0.5

Van't Veer needs 2200 training samples to get 50% typical overlap

Results for Breast Cancer Data

• For a typical overlap of 50% between two lists of 70 genes, more than 2300 patients are needed.

 The expected overlap between van't Veer's list and another list produced from similar experiment is less than 2%

Ein-Dor et al PNAS 2006

Bioinformatics 2005

Funding and support:

NIH, EC/RTN, EC/6FW, ISF, GIF, Bikura, Ridgefield, Minerva, Levine, Wolfson Foundations, IMOS,

