A closer look at Critical Points Slow dynamics, aging and their universal features

Andrea Gambassi

Max-Planck-Institut für Metallforschung, Stuttgart and Institut für Theoretische und Angewandte Physik, Universität Stuttgart

In collaboration with:

Pasquale Calabrese (Amst→Pisa) Michel Pleimling (Virginia Tech – USA) Florent Krzakala (ESPCI – Paris) Florian Baumann (Erlangen→Nancy)

XIII workshop SM&FT Bari, September 20-22, 2006

Critical Points & Critical Dynamics (reminder)

Critical Dynamics

TH:

late '70s: Hohenberg, Halperin... basic minimal models

...theoretical work...

2005: Folk, Moser (review)

EX:

'70-'80s: neutron scattering $S(\mathbf{q}, \omega)$, magn.

...exp. difficulties...

2005: X-ray^a "watching" critical relax.

^aMocuta et al. Science 308, 1287

Critical Dynamics

TH:

late '70s: Hohenberg, Halperin... basic minimal models

...theoretical work...

2005: Folk, Moser (review)

EX:

'70-'80s: neutron scattering $S(\mathbf{q}, \omega)$, magn.

...exp. difficulties...

2005: X-ray^a "watching" critical relax.

^aMocuta et al. Science 308, 1287

Mostly on: (a) Equilibrium DY close to CP » $S(\mathbf{q}, \omega)$ » *linear* response κ, η , etc. $T_R^{(l)} \sim \xi^{\mathbf{Z}}$ (b) Non-linear relaxation M

»
$$M(t) = \langle \phi_x(t) \rangle, \ T_R^{(nl)} \sim \xi^{z-\beta/\nu}$$

Critical Dynamics

TH:

late '70s: Hohenberg, Halperin... basic minimal models

...theoretical work...

2005: Folk, Moser (review)

EX:

'70-'80s: neutron scattering $S(\mathbf{q}, \omega)$, magn.

...exp. difficulties...

2005: X-ray^a "watching" critical relax.

^aMocuta et al. Science 308, 1287

Mostly on: (a) Equilibrium DY close to CP » $S(\mathbf{q}, \omega)$ » *linear* response κ , η , etc. $T_R^{(l)} \sim \xi^{\mathbf{z}}$ (b) Non-linear relaxation M» $M(t) = \langle \phi_x(t) \rangle, T_R^{(nl)} \sim \xi^{\mathbf{z} - \beta/\nu}$

Two-time quantities display aging![CKP'94]

Aging (spin glasses)

프 🕨 🛪 프

< 口 > < 🗗

Aging (spin glasses)

Ferromagnet $[T_c, \phi_x(t)]$ relaxing towards equilibrium

Ferromagnet $[T_c, \phi_x(t)]$ relaxing towards equilibrium

.

Dynamic Observables I

 $\phi_x(t)$ order param. (eg, *local* fluct. magn.)

Simplest obs.: (1) one-time quantities M (2) two- R, C

<ロ> <同> <同> < 同> < 同>

Dynamic Observables II

$$\mathbf{s} < t \qquad \begin{cases} C_{\mathbf{x}-\mathbf{y}}(t,\mathbf{s}) \equiv \langle \phi_{\mathbf{x}}(t)\phi_{\mathbf{y}}(\mathbf{s}) \rangle_{\text{conn}} & \text{CORR} \\ \\ R_{\mathbf{x}-\mathbf{y}}(t,\mathbf{s}) \equiv \frac{\delta}{\delta h_{\mathbf{y}}(\mathbf{s})} \langle \phi_{\mathbf{x}}(t) \rangle \Big|_{\mathbf{h}=0} & \text{RESP (lin.)} \end{cases}$$

 $t_{EQ}(T) \ll s < t$: $C_x(t,s) = C_x^{(eq)}(t-s)$; $R_x(t,s) = R_x^{(eq)}(t-s)$

$$TR_x^{(eq)}(\tau) = -\frac{\mathrm{d}C_x^{(eq)}(\tau)}{\mathrm{d}\tau}$$
 FD

Т

In general? Fluctuation-Dissipation Ratio [CK '94]

$$X(t,s) \equiv \frac{TR(t,s)}{\partial_s C(t,s)}$$

$$\begin{array}{ll} X^{\infty} \equiv \lim_{s \to \infty} \lim_{t \to \infty} X(t,s) & = 1 \text{ if } t_{\text{EQ}}(T) < \infty \\ \end{array}$$
??? FDT & TD with $T_{\text{eff}} \equiv T/X^{\infty} \xrightarrow{\text{YES}} \infty$ -range glass

Model (Glauber dyn)		$X^{\infty}(\infty \mapsto T_c)$
Random Walk, GF	, [1]	1/2
Spherical	[2]	1 - 2/d
1 dim leing	[4]	1/2
I-ulin. Ising	[2,3]	1/2
2-dim. Ising	[2]	0.26(1)
	[4]	0.340(5)
"	[5]	0.33(2)
** **	[6]	0.33(1)
** **	[7]	0.330(5)
3-dim. Ising	[2]	0.40
3-dim. XY	[8]	0.43(4)

Idea: X^{∞} at $T = T_c$ is *universal* [Godrèche, Luck '00]

Exact solution, Monte Carlo simulations.

- [1] Cugliandolo, Kurchan, Parisi 1994
- [2] Godrèche, Luck 1999, 2000
- [3] Zannetti et al. 1999
- [4] Mayer et al. 2003
- [5] Chatelain 2003
- [6] Sastre, Dornic, Chaté 2003
- [7] Chatelain 2004
- [8] Abriet, Karevski 2004

★ 문 → ★ 문 →

Model (Glauber d	yn)	$X^\infty(\infty\mapsto T_c)$	
Random Walk, GF	[1]	1/2	
Spherical	[2]	1 – 2/ <i>d</i>	
1-dim. Ising	[2,3]	1/2	
2-dim. Ising	[2]	0.26(1)	
"	[4]	0.340(5)	
"	[5]	0.33(2)	I AT
	[6]	0.33(1)	Ľ/ (1
	[7]	0.330(5)	l:
3-dim. Ising	[2]	0.40	(
3-dim. XY	[8]	0.43(4)	
Exact solution, Monte Carlo simulations.			
[1] Cugliandolo, Kurchan, Parisi 1994			2 5
[2] Godrèche, Luck 1999, 2000			2. 0
[3] Zannetti et al. 1999			
[4] Mayer et al. 2003			
[5] Chatelain 2003			

[6] Sastre, Dornic, Chaté 2003

[7] Chatelain 2004

[8] Abriet, Karevski 2004

dea: X^{∞} at $T = T_c$ is universal [Godrèche, Luck '00] ∜ exploit Universality! [CG'02] $\mathsf{TTICE}, \mathbb{Z}^d$ CONTINUUM, \mathbb{R}^d $\stackrel{\textit{Scaling}}{\mapsto}$ sing, $S_i(t)$ LGW, $\varphi(\mathbf{x}, t)$ $O(n), S_i^{\alpha}$ O(n) LGW, φ^{α} $\underset{\longrightarrow}{Scaling}$ MODEL A spin-flip Scaling spin-exch MODEL B 1 analytical predictions for $X(t, s), X^{\infty}$, scaling forms, exponents, etc.

ㅋㅋ ㅋㅋ

Model A

one-component o.p. $\varphi(x, t)$ on the continuum

$$\begin{split} \partial_t \varphi(\mathbf{x}, t) &= - \mathcal{D} \frac{\delta \mathcal{H}[\varphi]}{\delta \varphi(\mathbf{x}, t)} + \zeta(\mathbf{x}, t) \\ \langle \zeta(\mathbf{x}, t) \zeta(\mathbf{x}', t') \rangle &= 2 \mathcal{D} \delta(\mathbf{x} - \mathbf{x}') \delta(t - t') \\ &\Rightarrow \mathcal{P}_{\text{EQ}}[\varphi] \propto e^{-\mathcal{H}[\varphi]} \\ \mathcal{H}[\varphi] &= \int d^d \mathbf{x} \left[\frac{1}{2} (\nabla \varphi)^2 + \frac{1}{2} r \varphi^2 + \frac{u}{4!} \varphi^4 \right] \end{split}$$

$$\begin{array}{l} {}_{ \left[\mathsf{MSR'73,BJW'76} \right] \Longrightarrow} \mathsf{S}[\varphi,\tilde{\varphi}] = \int_{0}^{\infty} \! \mathrm{d}t \int \mathrm{d}^{d}x \left[\tilde{\varphi} \partial_{t} \varphi + D \tilde{\varphi} \frac{\delta \mathcal{H}}{\delta \varphi} - D \tilde{\varphi}^{2} \right] \\ \\ \left\langle \mathcal{O} \right\rangle_{\zeta} = \int [\mathrm{d}\varphi \mathrm{d}\tilde{\varphi}] \ \mathcal{O} \ \mathrm{e}^{-\mathcal{S}[\varphi,\tilde{\varphi}]} \qquad \tilde{\varphi} \leftrightarrow h \end{array}$$

 $\begin{array}{c} P[\varphi_0] \\ & & \text{initial cond. } \varphi_0(x,t) \equiv \varphi(x,t=0) \text{ with} \\ P[\varphi_0] \propto e^{-H_0[\varphi_0]} \\ H_0[\varphi_0] = \int d^d x \frac{\Delta}{2} [\varphi_0(x) - m_0]^2 \\ \text{[JSS'88]} \implies \text{FT with action } S[\varphi, \tilde{\varphi}] + H_0[\varphi_0] \end{array}$

Scaling forms

$$T = T_c, \quad s < t \qquad \begin{cases} R_{q=0}(t,s) = A_R \quad (t-s)^a \left(\frac{t}{s}\right)^{\theta} \mathcal{F}_R(s/t,t/t_0) \\ C_{q=0}(t,s) = A_C s \left(t-s\right)^a \left(\frac{t}{s}\right)^{\theta} \mathcal{F}_C(\quad,\quad) \end{cases}$$

 $\begin{aligned} & a = (2 - \eta - z)/z \\ & \theta \text{ initial-slip exponent } _{\text{USS'88]}} \\ & \mathcal{F}_{R,C}(0,0) = 1, \text{ universal;} \end{aligned}$

 $t_0 \equiv A_m m_0^{-1/\sigma} \text{ non-univ}$ $\sigma = \theta + a + \beta/(\nu z)$ $A_R, A_C \text{ non-univ.}$

イロト イヨト イヨト

Scaling forms

$$T = T_c, \quad s < t \qquad \begin{cases} R_{q=0}(t,s) = A_R \quad (t-s)^a \left(\frac{t}{s}\right)^{\theta} \mathcal{F}_R(s/t,t/t_0) \\ C_{q=0}(t,s) = A_C s \left(t-s\right)^a \left(\frac{t}{s}\right)^{\theta} \mathcal{F}_C(\quad,\quad) \end{cases}$$

 $a = (2 - \eta - z)/z$ θ initial-slip exponent [JSS'88] $\mathcal{F}_{R,C}(0,0) = 1$, universal; $t_0 \equiv A_m m_0^{-1/\sigma} \text{ non-univ}$ $\sigma = \theta + a + \beta/(\nu z)$ $A_R, A_C \text{ non-univ.}$

$$\begin{bmatrix} m_0 = 0 \end{bmatrix}_{\text{[JSS'38]}}$$

$$R_{q=0} = A_R(t-s)^a \left(\frac{t}{s}\right)^\theta \mathcal{F}_R(s/t,0)$$

$${}^{t \gg s} A_R t^a(t/s)^\theta$$

$$X^{\infty} = \frac{A_R}{A_C(1-\theta)}$$

.

Scaling forms

$$T = T_c, \quad s < t \qquad \begin{cases} R_{q=0}(t,s) = A_R \quad (t-s)^a \left(\frac{t}{s}\right)^{\theta} \mathcal{F}_R(s/t,t/t_0) \\ C_{q=0}(t,s) = A_C s \left(t-s\right)^a \left(\frac{t}{s}\right)^{\theta} \mathcal{F}_C(\quad,\quad) \end{cases}$$

 $a = (2 - \eta - z)/z$ θ initial-slip exponent [JSS'88] $\mathcal{F}_{R,C}(0,0) = 1$, universal; $t_0 \equiv A_m m_0^{-1/\sigma} \text{ non-univ}$ $\sigma = \theta + a + \beta/(\nu z)$ $A_R, A_C \text{ non-univ.}$

$$\begin{array}{ll}
\begin{array}{c}
\hline m_0 = 0 \\
\hline m_0 = 0
\end{array} \text{ [JSS'88]} \\
\hline m_0 = \infty
\end{array} \text{ ie, } s, t \gg t_0 \text{ [cGK'06]} \\
\hline R_{q=0} = A_R(t-s)^a \left(\frac{t}{s}\right)^{\theta} \mathcal{F}_R(s/t,0) \\
\hline t \gg^s A_R t^a(t/s)^{\theta} \\
\hline X^{\infty} = \frac{A_R}{A_C(1-\theta)} \\
\end{array} \begin{array}{l}
\hline m_0 = \infty
\end{array} \text{ ie, } s, t \gg t_0 \text{ [cGK'06]} \\
\hline R_{q=0} = a_R(t-s)^a \left(\frac{s}{t}\right)^{\beta\delta/(\nu z)} f_R(s/t) \\
\hline t \gg^s a_R t^a(s/t)^{\beta\delta/(\nu z)} \\
\hline X^{\infty} = \frac{A_R}{a_C(1-\frac{\beta\delta}{\nu z})}
\end{array}$$

 \implies for long times: (a) $m_0 = 0$ (b) $m_0 \neq 0 \rightsquigarrow crossover$

・ロ・・部・・ ほ・・ ほ・

Results $m_0 = 0$

Ising model, Glauber dynamics

• Global magnetization M(t):

X∞	FT	
<i>d</i> = 2	0.30(5)	
<i>d</i> = 3	0.429(6)	
<i>d</i> > 4	1/2	

^aMayer,Berthier, Garrahan and Sollich (2003)....

^bGodrèche and Luck (2000)

^CCorberi, Lippiello and Zannetti (2006), d = 4

note: same results for *local* magnetizaton $\langle \varphi(x, t) \rangle$

Results $m_0 = 0$

Ising model, Glauber dynamics

• Global magnetization M(t):

X^∞	FT	MC
<i>d</i> = 2	0.30(5)	0.340(5)(^a)
<i>d</i> = 3	0.429(6)	\simeq 0.40 (^b)
d > 4	1/2	$\simeq 0.5$ (°)

^aMayer,Berthier, Garrahan and Sollich (2003)....

^bGodrèche and Luck (2000)

^CCorberi, Lippiello and Zannetti (2006), d = 4

note: same results for *local* magnetizaton $\langle \varphi(\mathbf{x}, t) \rangle$

Results $m_0 = 0$

Ising model, Glauber dynamics

• Global magnetization M(t):

X^∞	FT	MC
<i>d</i> = 2	0.30(5)	0.340(5)(^a)
<i>d</i> = 3	0.429(6)	\simeq 0.40 (^b)
<i>d</i> > 4	1/2	$\simeq 0.5$ (°)

^aMayer,Berthier, Garrahan and Sollich (2003)....

^bGodrèche and Luck (2000)

^CCorberi, Lippiello and Zannetti (2006), d = 4

Other observables:

 $R, \ C, \ X \mapsto R_{\mathcal{O}}, \ C_{\mathcal{O}}, \ X_{\mathcal{O}}$ (eg. $\mathcal{O} = \varphi^2$ energy density, $h_{\mathcal{O}}$ bath temp.)

note: same results for *local* magnetizaton $\langle \varphi(\mathbf{x}, t) \rangle$

• *Global* magnetization M(t):

(a) Checked scaling forms & exp. $\beta \delta / (\nu z)$, MC d = 2

	X∞	FT	
(b)	<i>d</i> = 2	0.75	(^a)
	<i>d</i> > 4	4/5	

^aCalabrese, G, and Krzakala (2006)

note: same results for *local* magnetizaton $\langle \varphi(x, t) \rangle$

• *Global* magnetization M(t):

(a) Checked scaling forms & exp. $\beta \delta / (\nu z)$, MC d = 2

	X∞	ΗI	MC
(b)	<i>d</i> = 2	0.75	0.73(1)(^a)
	d > 4	4/5	

note: same results for *local* magnetizaton $\langle \varphi(\mathbf{x}, t) \rangle$

^aCalabrese, G, and Krzakala (2006)

• Global magnetization M(t):

(a) Checked scaling forms & exp. $\beta \delta / (\nu z)$, MC d = 2

_	X∞	FT	MC
(b)	<i>d</i> = 2	0.75	0.73(1)(^a)
	<i>d</i> > 4	4/5	

note: same results for *local* magnetizaton $\langle \varphi(x, t) \rangle$

^aCalabrese, G, and Krzakala (2006)

• O(n), n > 1: unphysical dyn. Gaussian fluc.: $X_L^{\infty} = 4/5$ $X_T^{\infty} = 2/3 \implies$ no T_{eff} even at the Gaussian level

• Purely dissipative dyn (Model A), O(n) GLW:

- *n* = 1 anisotropic magnets/alloys
- $\forall n$ lattice spin models with Glauber dyn
- $\rightarrow X^{\infty}(m_0 = 0)$ [2L]: OK w. MC Ising 2d & 3d and XY 3d
- $\rightsquigarrow X^{\infty}(m_0 \neq 0)$ [1L]: OK w. MC Ising 2d

$$\rightarrow$$
 T_{eff} ???

- Conserved dyn (Model B) scalar GLW
 - some uniaxial ferromagnets
 - Ising model with Kawasaki dyn
 - \sim [1L] $X_{Model B}^{\infty} > X_{Model A}^{\infty}$: OK with MC Ising 2d [GKRT'04]

Other dyn: Model C [1L], Model A dilute Ising [1L] [SP'04]

- ? Aging at surfaces (different Universality Classes!) [MC:P'05; Sph mod:PB'05]
- ? More realistic dynamics...
 - magnets \implies Models J,G (A)
 - fluids ⇒ Model H (B)
 ... waiting for experiments!
- ? Slow dynamics at QCP

- ? Aging at surfaces (different Universality Classes!) [MC:P'05; Sph mod:PB'05]
- ? More realistic dynamics...
 - magnets \implies Models J,G (A)
 - fluids ⇒ Model H (B)
 ... waiting for experiments!
- ? Slow dynamics at QCP

Take-home message:

FT is a viable approach to investigate aging phenomena at critical points!

Ref.: Calabrese&G, J.Phys.A 38 (2005) R133-R193