2-color QCD with finite chemical potential: the method of analytical continuation

P. Cea^{1,2}, L. Cosmai², M. D'Elia³ and A. Papa⁴

¹Dipartimento di Fisica, Università di Bari

²INFN-Bari

³Dipartimento di Fisica, Università di Genova and INFN-Genova

⁴Università della Calabria & INFN - Cosenza

SM & FT 2006 - Bari, September 20-22, 2006

- Introduction and motivation
- Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

- Introduction and motivation
- 2 Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

- Introduction and motivation
- 2 Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

- Introduction and motivation
- 2 Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

- Understanding the phase diagram of QCD on the temperature chemical potential (T, μ) has many important implications in cosmology, in astrophysics and in the phenomenology of heavy ion collisions.
- The discretization of QCD on a space-time lattice and the use of Monte Carlo numerical simulations in the Euclidean space-time provide us with a useful investigation tool.
- However, in QCD with non-zero chemical potential, however, the fermion determinant becomes complex and standard numerical simulations are not feasible – the so-called sign problem.

- Ways out:
 - to perform simulations at μ =0 and to take advantage of physical fluctuations in the thermal ensemble for extracting information at (small) non-zero μ , after suitable reweighting;

```
[I.M. Barbour et al., 1998] [Z. Fodor and S.D. Katz, 2002 \rightarrow]
```

- Ways out (cont'd)
 - to Taylor expand in μ the v.e.v. of interest and to calculate by means of numerical simulations at $\mu=0$ the coefficients of the expansion;

```
[S.A. Gottlieb, 1987]
[Ph. de Forcrand et al., 1999]
[A. Hart, M. Laine, O. Philipsen, 2000-2001]
[R.V. Gavai and S. Gupta, 2003-2005]
[C.R. Allton et al., 2002-2003-2005]
```

- Ways out (cont'd)
 - to perform numerical simulations at *imaginary* chemical potential, for which the fermion determinant is again real, and to analytically continue the results to real μ

```
[M.G. Alford, A. Kapustin, F. Wilczek, 1999]
[M.P. Lombardo, 2000]
```

```
advantage: not limited by increasing lattice sizes drawback: the extent of the attainable domain with real \mu is limited (1) by the periodicity and the non-analyticities present for imaginary \mu
```

(2) by the accuracy of the interpolation of data for imaginary μ ;

For all the listed methods, the applicability region is restricted to $\mu/T \lesssim 1$.

• Here, we test the method of analytical continuation in a theory which does not suffer the sign problem, 2-color QCD, and show that the method can be improved considerably by using a suitable interpolation of the data at imaginary μ .

- Introduction and motivation
- 2 Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

QCD with finite chemical potential

On the continuum:

$${\cal L}={\cal L}_{QCD}+\mu {\it J}_0\;, \qquad {\it J}_\mu=\overline{\psi}\gamma_\mu\psi$$
 $\int {\it d}^3x{\it J}_0={\it N}-\overline{\it N}\;, \qquad {\it N}\,(\overline{\it N})$ no. of (anti-)particles

On the lattice:

$$U_4(n) \rightarrow e^{a\mu} \, U_4(n) \; , \qquad \quad U_4^\dagger(n) \rightarrow e^{-a\mu} \, U_4^\dagger(n) \label{eq:U4}$$

[F. Karsch, P. Hasenfratz, 1983]

$$\begin{split} \langle O \rangle &= \frac{\int DU \, D\overline{\psi} \, D\psi \, \, O[U,\psi,\overline{\psi}] \, \, e^{-S_F[U,\psi,\overline{\psi}]-S_G[U]}}{\int DU \, D\overline{\psi} D\psi \, \, e^{-S_F[U,\psi,\overline{\psi}]-S_G[U]}} \\ S_F &= \sum \overline{\psi}(n) M_{nm} \psi(m) \quad \longrightarrow \quad \int D\overline{\psi} \, D\psi \, \, e^{-S_F[U,\psi,\overline{\psi}]} = \det M[U] \end{split}$$

- Introduction and motivation
- 2 Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

The "sign" problem

$$\langle \, O \rangle = \frac{\int DU \, \langle \, O \, \rangle_{S_F} e^{-S_{\text{eff}}[U]}}{\int DU \, e^{-S_{\text{eff}}[U]}} \qquad \langle \, O \rangle_{S_F} = \frac{\int D\overline{\psi} D\psi \, \, O[U,\psi,\overline{\psi}] \, e^{-S_F[U,\psi,\overline{\psi}]}}{\int D\overline{\psi} D\psi \, \, e^{-S_F[U,\psi,\overline{\psi}]}}$$

$$S_{eff}[U] = S_G[U] - \ln \det M[U]$$

- In order to perform numerical simulations "det M" must be real
 - OK for $\mu = 0$ in SU(3)
 - NO for $\mu \neq 0$ in SU(3) !
 - OK for finite isospin density
 - OK for $\mu \neq 0$ in SU(2), owing to $M^* = \tau_2 M \tau_2$
 - OK for $\mu = i\mu_I$ in SU(N_c) (imaginary chemical potential)

- Introduction and motivation
- 2 Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

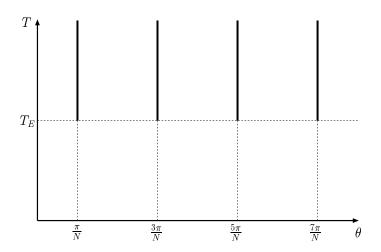
QCD with imaginary chemical potential

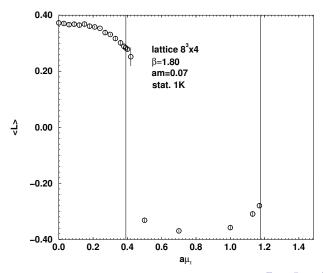
SU(N_c) gauge theory with imaginary μ

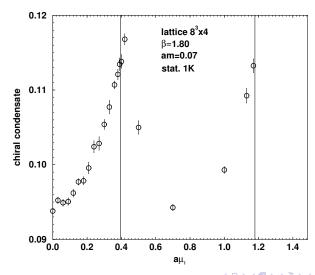
$$\mu \to i\nu$$
, $Z(\theta) = \text{Tr}\left[e^{-\beta H + i\theta \hat{N}}\right]$, $\theta = \beta \nu$

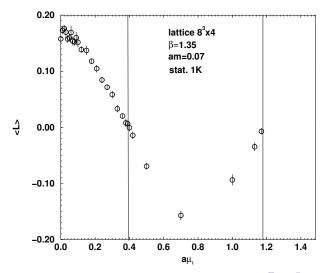
- Free quarks $(N = 0, 1, 2, ...) \longrightarrow Z(\theta)$ periodic with 2π
- Color singlets (N multiple of N_c) \rightarrow $Z(\theta)$ periodic with $2\pi/N_c$
- [Roberge and Weiss, 1986] have shown that
 - $Z(\theta)$ is always periodic with $2\pi/N_c$
 - the free energy, $F(\theta) = -\ln Z(\theta)/\beta$, is a regular function of θ for $T < T_E$ is a discontinuous function in $\theta = 2\pi(k+1/2)/N_c$ for $T > T_E$
- This scenario has been confirmed in numerical simulations in SU(3) [Ph. de Forcrand and O. Philipsen, 2002; M. D'Elia, M.P. Lombardo, 2003] and in SU(2) [P. Giudice, A.P., 2004]

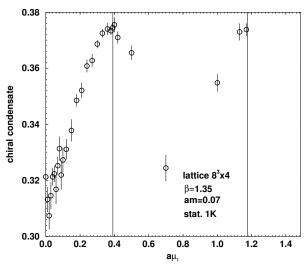
Phase diagram on the (T,θ) -plane



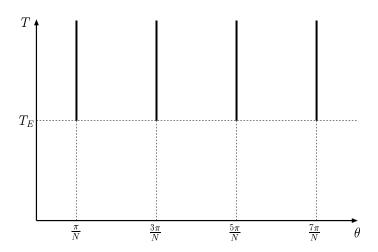




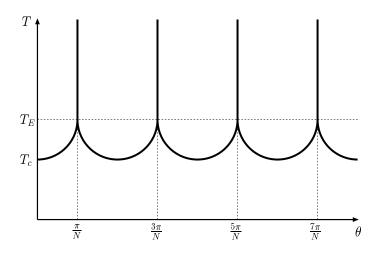




Phase diagram on the (T,θ) -plane



Phase diagram on the (T,θ) -plane



- Introduction and motivation
- Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- 3 The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

Description and state-of-the-art

- Strategy of the method of analytical continuation [M.G. Alford, A. Kapustin, F. Wilczek, 1999]
 [M.P. Lombardo, 2000]
 - determine $\langle \mathcal{O} \rangle$ for a set of value of imaginary chemical potential, $\mu = i \mu_l$
 - interpolate $\langle \mathcal{O} \rangle (\mu)$ with a polynomial:

$$\langle \mathcal{O} \rangle (\mu) = a_0 + a_2 \mu^2 + a_4 \mu^4 + a_6 \mu^6 + O(\mu^8)$$

• analytically continue to $\mu=\mu_R$ by the replacement $\mu^2 \to -\mu^2$

$$\langle \mathcal{O} \rangle (\mu) = a_0 - a_2 \mu^2 + a_4 \mu^4 - a_6 \mu^6 + O(\mu^8)$$

- Applied in
 - SU(3), $n_f = 2$ [Ph. de Forcrand, O. Philipsen, 2002]
 - SU(3), $n_f = 3$ [Ph. de Forcrand, O. Philipsen, 2003]
 - SU(3), $n_f = 4$ [M. D'Elia, M.P. Lombardo, 2003]

Description and state-of-the-art

- Tested in
 - 3d SU(3) + adjoint Higgs model
 [A. Hart, M. Laine, O. Philipsen, 2001]
 - SU(2), n_f = 8 [P. Giudice, A.P., 2004]
 - 3d 3-state Potts model [S. Kim et al., 2005]
- So far, the method has been applied using polynomials as interpolating functions
- Here, we propose and test an approach based on the use of ratio of polynomials

Description and state-of-the-art

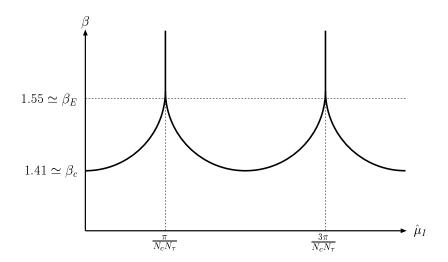
- Tested in
 - 3d SU(3) + adjoint Higgs model
 [A. Hart, M. Laine, O. Philipsen, 2001]
 - SU(2), n_f = 8 [P. Giudice, A.P., 2004]
 - 3d 3-state Potts model [S. Kim et al., 2005]
- So far, the method has been applied using polynomials as interpolating functions
- Here, we propose and test an approach based on the use of ratio of polynomials

- Introduction and motivation
- Theoretical background
 - QCD with finite chemical potential
 - The "sign" problem
 - QCD with imaginary chemical potential
- The method of analytical continuation
 - Description and state-of-the-art
 - Our new approach: numerical results
- Conclusions and outlook

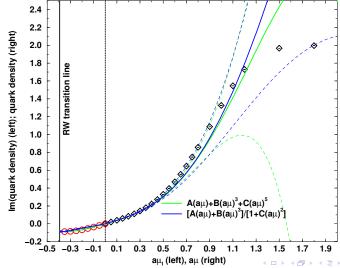
Numerical results - Details on the lattice simulations

- SU(2) gauge theory with n_f =8 staggered fermions, fermion mass am=0.07, on a 16³ × 4 lattice
- hybrid Monte Carlo algorithm, with dt=0.01
- observables (statistics 1000-5000):
 - chiral condensate $\langle \bar{\psi}\psi \rangle$
 - Polyakov loop
 - fermion number density
- simulations on the APEmille crate in Bari and on the recently installed computer facilities at the INFN APEnext Computing Center
- preliminary results at $\beta = 1.90 > \beta_E$, for which the window in μ_I free of non-analyticities is the largest possible

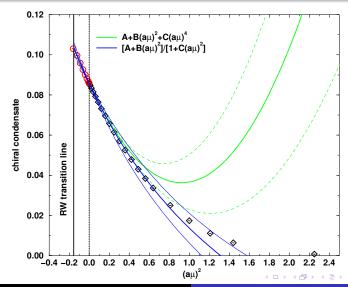
Numerical results



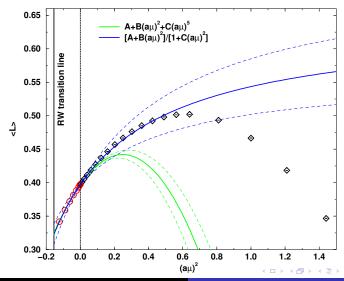
Numerical results - Fermion number density



Numerical results - Chiral condensate



Numerical results - Polyakov loop



Conclusions

- We have verified by comparison with direct Monte Carlo determinations at real chemical potential in 2-color QCD that the method of analytical continuation considerably improves if ratio of polynomials is used as interpolating function instead of truncated Taylor series.
- In the case of the Polyakov loop and of the chiral condensate an interpolation of numerical data at imaginary chemical potential over the window permitted by Roberge-Weiss singularities allows an extrapolation to real values of the chemical potential over a much larger region.
 - Deviations at very large values of the chemical potential could be due to unphysical saturation of the fermionic density ("Pauli blocking").
- The presence of the Roberge-Weiss transition has no influence on the analyticity of the partition function at real values of μ .
- Our method looks very promising in view of applications to real QCD.

Outlook

- It is in progress the test to other values of the gauge coupling, in particular to those values for which non-analyticities (different from the first order Roberge-Weiss) are expected for real or imaginary chemical potential
- Forthcoming applications of this method
 - analytical continuation of the critical line in 2-color QCD
 - SU(3) with finite isospin density