Wako–Saitô–Muñoz–Eaton Model of Protein Folding

Alessandro Pelizzola, Dipartimento di Fisica, Politecnico di Torino

Pierpaolo Bruscolini (BIFI, Zaragoza) Alberto Imparato (PoliTO) Marco Zamparo (PoliTO)

The Model

Protein:

- sequence of aminoacids,
- connected by C–N peptidic bonds,
- with a well–defined low–energy, low–entropy native state,
- whose native structure is thought to be important for the kinetics

The Model

- A binary variable $m_i = 0, 1$ is associated to each peptidic bond $i = 1, \dots N$.
- $m_i = 1$ for a native peptidic bond, 0 otherwise
- an entropy $q_i > 0$ is associated to each non-native bond
- two aminoacids can interact only if
 - they are in contact in the native state
 - all the peptidic bond between them are ordered (native)
- Effective free energy ("Hamiltonian")

$$H = -\sum_{i < j} \epsilon_{ij} \Delta_{ij} \prod_{k=i}^{j} m_k - T \sum_i q_i (1 - m_i)$$

• 1D model with long-range, many-body interactions

Previous works on equilibrium

Wako and Saitô (1978):

- PBC, translation invariant
- Exact solution

Eaton and co. (1997–1999):

- Single sequence approx $0 \cdots 01 \cdots 10 \cdots 0$
- Double sequence approx $0 \cdots 01 \cdots 10 \cdots 01 \cdots 10 \cdots 0$
- Triple sequence approx \cdots

Banavar, Flammini and Maritan (2002):

- Mean field
- Ideal α -helix: exact solution
- Ideal β -hairpin: exact solution

- - (thanks!)

Equilibrium: exact solution in the non-homogeneous case

The mapping to the new binary variables
$$x_{i,j} = \prod_{k=i}^{j} m_k$$
 yields a 2D model on (a portion of) a square lattice, such that

• the new variables are non-interacting, except for

• the constraints
$$x_{i,j} = x_{i+1,j} x_{i,j-1}$$
,

- and the number of states per row is linear in N
- [P. Bruscolini and A. Pelizzola, Phys. Rev. Lett. 88, 258101 (2002)]

Equilibrium probability factors:

$$p = \prod_{\text{plaqs}} p_{\text{plaq}} \prod_{\text{links}} p_{\text{link}}^{-1} \prod_{\text{sites}} p_{\text{site}}$$

[A. Pelizzola, J. Stat. Mech. P11010 (2005)]

Single sequence, double sequence, . . . approximations severely underestimate entropy of disordered state

CI2: free energy vs number of native bonds at denaturation temperature

Local Equilibrium Kinetics

Assume factorization of the probability at any time

Master equation for local probabilities has polynomial complexity for "simple" kinetics (e.g. single "bond–flip")

- free energy decreases
- exact equilibrium is reached
- equilibration rate is an upper bound of the exact one

[M. Zamparo and A. Pelizzola, Phys. Rev. Lett. 97, 068106 (2006)]

Probability of β -hairpin bond *i* being native, versus time. Solid lines: our results, dashed line: exact results.

Probability of villin headpiece α -helices being native, versus time. Solid lines: Monte Carlo, dashed line: local equilibrium

PIN1 equilibration rate versus inverse temperature. Solid lines: Glauber kinetics, dashed line: Metropolis kinetics, dotted line: simplifying kinetics.

Equilibration rate for a β -sheet of four strands versus absolute contact order. Dots: our results, line: exponential fit.

Stretching under external force

Recall simplest polymer model (rubber):

 $s_i = +1(-1)$ if monomer parallel (antiparallel) to force

$$L = \sum_{i} s_{i}$$
 $H = -fL$ (paramagnet)

Hooke's law

Contraction by heating

 $PROTEIN \equiv sequence of rigid stretches$

For each stretch: native length l_{ij} , orientation $\sigma_{ij} = \pm 1$

$$H(m,\sigma) = H_0(m) - fL(m,\sigma),$$

$$H_0(m) = -\sum_{i < j} \epsilon_{ij} \Delta_{ij} \prod_{k=i}^j m_k$$
$$L(m, \sigma) = \sum_{0 \le i < j \le N+1} l_{ij} \sigma_{ij} (1 - m_i) (1 - m_j) \prod_{k=i+1}^{j-1} m_k$$
$$\sum_{\{\sigma\}} \exp(-\beta H(m, \sigma)) = \exp(-\beta H_{eff}(m))$$

can be performed analytically $\Rightarrow H_{eff}$ still exactly solvable For zero force: $H_{eff} = \text{WSME}$ model with $q_i = \ln 2$

1TIT under dynamic loading: f(t) = rt

$$f^* = \frac{k_B T}{x_u} \ln\left[\frac{r x_u \tau_0}{k_B T}\right]$$

[E. Evans, 2001; D. Derényi et al, 2004]

 $x_u =$ temperature independent unfolding length

1TIT under force clamp $\langle \tau_{\rm u} \rangle = \frac{\exp\left[\beta \left(\Delta E_{\rm u} - f x_{\rm u}\right)\right]}{\omega_0},$ 10 $\tilde{T} = 6$ $(x_u = 3.2 \pm 0.1)$ \odot $\tilde{T} = 8 \quad (x_u = 3.0 \pm 0.3)$ 9 \triangle 8 $\log\left<\tau_{\rm u}\right>$ \triangle 7 6 frag replacements 5 \mathbb{R} \bigotimes 4 \bigcirc \bigotimes 26 10 12 14 16 18 20 22 24 $f\left(\epsilon/\mathring{A} ight)$

1BBL under force clamp: distribution of unfolding times

Small force: exponential

Large force: lognormal

[cfr. MD by Szymczak and Cieplak, 2006]

Energy landscapes

Jarzynski equality + weighted histograms $\Rightarrow F(L)$ [Imparato and Peliti, 2006]

1COA, T=1

CONCLUSIONS

Highly simplified model yields:

- Exact equilibrium
- "Quasi-exact" kinetics
- Two–state, single exponential kinetics
- Rates, relation to contact order
- Theoretical vs experimental rates, Φ -values, pathways, transition state ensembles (TO DO!)
- Stretching