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For isoenergetic shear, Evans-Cohen-Morriss (1993)
proposed and tested this relation:
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Ωτ average entropy production rate in long seg-
ment length τ ; λi = finite time Lyapunov exp.
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λi,n ∝ average entropy production rate
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entropy production = phase space contraction
only for Gaussian isoenergetic, not too far from
equilibrium.

Virtually no hypotheses: only time reversibility.
Transient: non-invariant distributions. Numeri-
cal and mathematical support for Steady State.



In 1995, Gallavotti and Cohen, inspired by ECM:

Chaotic Hypothesis: A reversible N-particle
system in a stationary state can be regarded
as transitive Anosov system, for calculations
of its macroscopic properties.

Markov partition; attribute weight to cell Ci

Λ−1
wi,u,τ = 1/|Jacobian dynamics restricted to W u|

wi = {Stxi}τ/2
t=−τ/2, large τ , xi ∈ Ci.
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Chaotic Hypothesis: A reversible N-particle
system in a stationary state can be regarded
as transitive Anosov system, for calculations
of its macroscopic properties.

Markov partition; attribute weight to cell Ci

Λ−1
wi,u,τ = 1/|Jacobian dynamics restricted to W u|

wi = {Stxi}τ/2
t=−τ/2, large τ , xi ∈ Ci.

Theorem for phase space contraction rate.



Q.: which systems look like Anosov?
Similarly to ergodicity, microscopic dynamics such
that deviations from Anosov unobservable.
Different mechanisms?

Indeed, there are difficulties. For instance:
convergence times diverge while approaching
equilibrium and GCFR domain shrinks to {0}.
Why? Easy to see in simple systems

σ = σd + σc = O(F 2
e ) + σc(Fe = 0)

Anosov, strong; FR, for phase space contraction.



Evans-Searles tried a different approach: rely on
Liouville equation only, for reversible systems.

Phase space M, evolution Sτ : M→M;

reversibility iSτΓ = S−τ iΓ;

regular measure dµ(Γ) = f (Γ)dΓ;

odd observable Ω : M→ IR,



Dissipation function for TRI f :

Ωt0,t0+τ(Γ) =
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f (St0+τΓ)
−

∫ t0+τ

t0

Λ(StΓ)dt

]
=

1

τ

∫ t0+τ

t0
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Λ = −σ = phase space expansion rate.
Suitable (equilibrium) f ⇒
Ω = dissipation rate = FeJ/k

B
T



Let δ > 0, t0 = 0, A+
δ = (A− δ, A + δ)

A−
δ = (−A− δ,−A + δ)

Consider

µ(C(Ω0,τ ∈ A+
δ ))
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, (2)

Observe that

C(Ω0,τ ∈ A−
δ ) = iSτC(Ω0,τ ∈ A+

δ ) (3)

introduce the transformation Γ = iSτX



Some algebra yields Evans-Searles Transient FR

µ(C(Ω0,τ ∈ A+
δ ))

µ(C(Ω0,τ ∈ A−
δ ))

= 〈exp (−Ω0,τ)〉−1
Ω0,τ∈A+

δ

= e[A+ε(δ,A,τ)]τ (4)

ε ≤ δ (5)

Interesting, although transient, like Jarzynski &
Crooks FRs. Experiments.



Now, let averaging start at time t0

µ(C(Ωt0,t0+τ ∈ A+
δ ))

µ(C(Ωt0,t0+τ ∈ A−
δ ))

(6)

and take t = t0 + τ + t0. Then

C(Ωt0,t0+τ ∈ A−
δ ) = iStC(Ωt0,t0+τ ∈ A+

δ ) (7)

Change coordinates: Γ = iStW .



Move evolution from sets to measures:

µt0(S
t0E) = µ(E) (8)
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= A + ε(δ, t0, A, τ ) + (9)
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µt0 → µ∞, should change from statement on en-
semble of trajectories, ft0, even long t0, to state-
ment concerning also statistics of single typical
trajectory: the Steady State Evans-Searles FR.
Trouble: t0 →∞ before τ in〈

e−Ω0,t0 · e−Ωt0+τ,2t0+τ
〉

Some assumption is necessary.
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〈
e−Ω0,t0

〉
=

∫
e−Ω0,t0

(Γ)f (Γ)dΓ =

∫
ft0(Γ)dΓ = 1
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If not instantaneous, approximate
(need τ > O(tM)).

Close to equilibrium only add O(F 2
e ): t0 → ∞,

τ > O(tM), gives finite phase average, unaf-
fected by further increase of τ (change of µ).

Range of A around [0, 〈Ω〉].



Conclusions.

1. Steady sate FR for dissipation function within
physical times only from reversibility and corre-
lations decay. These are the physical reasons.

2. Boundedness of Ω + transitivity may suf-
fice. No need for (approximate) anosovicity, only
boundedness of steady state mean of e−Ω0,t0:
1 at equilibrium, O(F 2

e ) corrections if close.



Why worry about such questions?
Stochastic approach yields very easily, very rea-
sonably the FRs. Yields more than determinism.
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But: stochastic approach does not explain how
irreversibility arises (Kurchan).

Ambiguities in identification of observables.
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Deterministic thermostats: efficiency in calcula-
tion of transport properties. But more for FRs:

• dimensional reduction & slope < 1
(Bonetto, Gallavotti, Garrido, Segre, R)

• lack of LTE (Benettin, Jepps, Lepri, R)

• time scales (Evans, Searles, R)

Which physical mechanisms determine FRs?
Like ergocity is too little and too much;
anosovicity is too little and too much.


