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� Haldane, Affleck and others, showed that antiferromagnetic

1D chains of quantum spins present two kinds of large dis-
tance correlations: exponentially falling if the spin s is
integer and power-law if s is half-integer.

� It was also shown that the 1D chain of quantum spins s
shares the same large distance physics than the 2D non-
linear O(3) sigma model with a theta term q=2ps.

� In particular, and due to the periodicity of the topological q
term, this equivalence should imply that the 2D O(3) non-
linear sigma model with a q=p term must be massless.

� Two recent numerical simulations (Bietenholz et al., Azcoiti
et al.) suggest that the model undergoes a second order
phase transition at q=p, although the two papers disagree in 
assigning the universality class.

� We have directly calculated the mass gap by numerical
simulation.



� A direct simulation of the 2D O(3) nonlinear sigma model at q=p
runs with two tough problems:

� if indeed the model is critical then a direct Monte Carlo simulation

becomes unfeasible since exponentially large lattice sizes are needed and

� at real q the Boltzmann weight is complex and loses its probability

meaning.

� Then we have simulated the model at imaginary q, q= iJ, J œR,

and analytically continued the results to the real q axis. The 

continuation was performed by use of a numerical extrapolation.

� In the simulations we used the standard action,

� We did not use actions (expansion parameters) with better

scaling (asymptotic scaling) since we were interested only in the 

vanishing of 1/x.
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� As for the topological charge Q we made use of two different

definitions on the lattice. We called them Q(1) and Q(2). The 

first one is the usual naive (also called field-theoretical), the 

corresponding density of charge being

� where d,b,c are O(3) group indices and m,n are space indices.

� Q(1)(x) satisfies the continuum limit
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Q(x) being the density of topological charge in the continuum.
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� It is well-known that in general the lattice topological charge

must be renormalized (Pisa group), Q(1,2)=ZQ
(1,2) Q, where Q is

the integer-valued continuum charge.

� The renormalization constant of the geometrical charge is

ZQ
(2)=1 (Lüscher). On the other hand ZQ

(1) depends on b (not on 

q) and in general is different from 1.

� ZQ
(1) was originally computed in perturbation theory (Campos-

trini et al.). We have chosen instead a non-perturbative method 

to evaluate this constant (Di Giacomo-Vicari).

� A configuration with total topological charge Q=1 is heated at a 

temperature b (100 Heat-Bath steps) without changing the topo-

logical sector (cooling checks are periodically done). The value

of Q(1) at equilibrium must be ZQ
(1)Q=ZQ

(1).
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� The relevant consequence of the above considerations for our

work is that the qL parameter that appears in the expression of 

the Hamiltonian used in our computer program in general is not

equal to the true physical q parameter. They are related by

q=qL ZQ
(1,2). Clearly this distinction only applies to the naive

charge Q(1) since ZQ
(2)=1 for all b.

� … Q(1) can be simulated by using a fast cluster algorithm that

has been expressly introduced in the present investigation. 

Thanks to this updating algorithm, the simulation of Q(1) is, 

even including the computation of ZQ
(1), much faster than the 

simulation of Q(2).

� Using the lattice topological charge Q(1) (that requires the extra 

calculation of a renormalization constant) has its advantage…



� Every updating of a cluster algorithm starts by introducing a 

random unit vector and separating the components parallel and 

perpendicular to it for all spins (Swendsen-Wang, Wolff),

where the scalar product is called “equivalent Ising spin”.
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� Introducing this splitting into the definition of Q(1), we obtain

an expression that is linear in the equivalent Ising spin

(because Q(1) is written in terms of a determinant of three

spin vectors).

� Therefore the problem turns into an Ising model with site-

dependent couplings and within a local magnetic field h(x),
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� There are several algorithms adapted to simulate Ising models

in a local magnetic field (Wang, Lauwers-Rittenberg). After 

testing their performances, we chose the Wang method.

� Our algorithm satisfies the detailed balance property.

� We extracted the correlation length x from the exponential

decay of the largest eigenvalue in the matrix of correlation

functions among the two operators
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� The Fortuin-Kasteleyn clusters were created by using the Hoshen-

Kopelman procedure.

� The initial random vector was generated by the Niedermayer method in 

order to bolster ergodicity.
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�Analytical continuation was

performed by a numerical

extrapolation.

�Polynomials in qL
2 and their ra-

tios were used as trial functions. 

�The Renormalization Group

prediction was avoided as a

trial function since it assumes

the vanishing of 1/x and we

preferred to leave room for any

behaviour.



b=1.5,  Q(1) (p/ZQ
(1))2





3.08(9)0.680.412(5)56(3)4701.75

3.11(9)1.040.380(6)67(3)3401.70

3.15(10)0.450.325(6)94(5)1801.60

3.00(12)0.900.285(9)111(5)1201.50

qzeroc2/d.o.f.ZQ
(1)(qL,zero)
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3.11(16)0.731.09.7(1.0)1501.55

3.22(16)1.721.010.4(1.0)1101.50

qzeroc2/d.o.f.ZQ
(2)(qzero)
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� We have simulated the O(3) nonlinear sigma model with an

imaginary q term, measured the mass gap and extrapolated

the results to real q in order to give evidence for the theoreti-

cally expected criticality at q=p.

Conclusions

� Our results are in excellent agreement with expectations: as-

suming gaussian errors, our world average for the value of q
where the mass gap closes is .

� The above number seems very robust since compatible

results were obtained by using two different topological

charge operators.

� A fast cluster algorithm was purposely introduced for simu-

lations at imaginary q for one of the two topological charges. 

The other topological charge operator was simulated by the 

usual (rather slow) Metropolis updating.

q=3.10(5)


