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I. BKT phase transition in spin and gauge models

Ü V. L. Berezinsky, Sov. Phys. JETP 32 (1971) 493.

Ü J. Kosterlitz, D. Thouless, J.Phys. C6 (1973) 1181.

BKT phase transition takes place in a number of spin and gauge models

• 2D spin models: XY , Z(N > 4), Coulomb-gas like systems, SOS
model.

• 3D gauge theories at finite temperature: U(1) and possibly Z(N)

and SU(N) for N large enough.



Characteristic features of this phase transition are

• no spontaneous symmetry breaking occurs

• free energy and all its derivatives are analytic functions of temperature

• correlation length diverges exponentially in the vicinity of critical point

• correlation function decreases with power law at low temperatures

- Difficulties in studying the BKT phase transition

- Phenomenological RG by Kosterlitz and Thouless

- Monte-Carlo simulations



II. Compact 3D U(1) model on the lattice

3d U(1) gauge theory on the anisotropic lattice is defined as

Z ≡ Z(Λ;βt, βs) =
∫ 2π

0

∏
l

dωl

2π
expS[ω] ,

where S is the Wilson action

S[ω] = βs
∑
ps

cosω(ps) + βt
∑
pt

cosω(pt)

Z is evaluated on configurations which satisfy periodic BC

ωn(x) = ωn(x + Nt) , atNt = β = 1/T



Dual representation of the anisotropic model

Ü T. Banks, J. Kogut, R. Myerson, Nucl.Phys. B121 (1977) 493.

Z =
∞∑

r(x)=−∞

∏
x

2∏
n=0

Ir(x)−r(x+en)(βn) ,

Ir(z) - the modified Bessel function.

The Villain version of 3D U(1) in dual representation

Z =
∞∑

r(x)=−∞
exp

−∑
x

2∑
n=0

1

2βn
(r(x)− r(x + en))

2

 .



III. Overview of the results and problems

Ü A. Polyakov, Nucl.Phys. B120 (1977) 429

Ü M. Göpfert, G. Mack, Commun.Math.Phys. 81 (1981) 97

String tension and mass gap in the Euclidean limit βt = βs = β,

a2σ(j = 1) ≥
8√

2π2β
exp

[
−

1

2
π2βG0

]
,

am = (8π2β)1/2 exp
[
−

1

2
π2βG0

]
.

G0 ≈ 0.5054 is zero-distance Green function.



Theory at finite temperature

Ü N. Parga, Phys.Lett. B107 (1981) 442

At high temperatures the system becomes two-dimensional. Monopoles of
the U(1) gauge theory become vortices of the 2d system. The partition
function turns out to coincide (in the leading order of the high-temperature
expansion) with the 2d XY model in the Villain representation. The effec-
tive coupling of the XY model reads

βeff = 1/(g2β) ,

while the effective activity of the vortices is

y(β) = exp

[
−

π2

2βeff
(1 + β2/3)

]
The XY model is known to have the Berezinskii-Kosterlitz-Thouless (BKT)
phase transition of the infinite order which occurs for the Villain model at

βeff ≈ 2/π .



Svetitsky-Yaffe conjecture

Ü B. Svetitsky, L. Yaffe, Nucl.Phys B210 (1982) 423

• The finite-temperature phase transition in the 3d U(1) LGT belongs
to the universality class of the 2d XY model.

• The global U(1) symmetry cannot be broken spontaneously because
of the Mermin-Wagner theorem. There is no local order parameter.

• The correlation function of the Polyakov loops (which become spins of
the XY model) decreases with the power law at β ≥ βc

P1(R) �
1

Rη(T )
, η(Tc) = 1/4

• For β < βc, t = βc/β − 1

P1(R) � exp [−R/ξ(t)] , ξ ∼ ebt−ν
, ν = 1/2



Some numerical results

Ü P. Coddington, A. Hey, A. Middleton, J. Townsend, Phys.Lett. B175 (1986) 64

Check of the universality conjecture on the lattices L2 × Nt with L =

16,32 and Nt = 4,6,8.

• The varying of η with β and the behaviour of the susceptibility are
indicative for BKT type of the phase transition.

• The critical index is almost three times of that predicted for the XY

model, η ≈ 0.78.



Problems

• Universality problem. So far there is no numerical indications that criti-
cal indices of 3d U(1) LGT coincides with those of the 2d XY model.
Analytical calculations have been performed with the leading term of
the high-temperature expansion.

• Monte-Carlo simulations. In finite-temperature simulations the scaling
was not reached. The problem can be in the finite-size effects. In the
XY model, due to logarithmic corrections, in order to reliably deter-
mine critical indices one should use the FSS technics and/or simulate
the model on large thermodynamic lattices, i.e. L � ξ.

• Construction of the continuum limit at high temperatures. In the zero-
temperature model the continuum limit is constructed as a limit a → 0

such to maintain the mass gap constant.



IV. Limiting values of anisotropic couplings

1. The limit βt = 0

The model reduces to a product of non-interacting two-dimensional gauge
models.

Z(βt = 0, βs) =

 ∞∑
r=−∞

IL2

r (βs)

Nt

The model is in the confined phase at all values of βs

σ = ln
I0(βs)

Ij(βs)
.



2. The limit βs = 0

In this limit the U(1) model reduces to the XY -like model

Z(βt, βs = 0) =
∫ 2π

0

∏
x

dωx

2π

∏
x,n

 ∞∑
r=−∞

INt
r (βt) exp

[
ir(ωx − ωx+en)

] .

eirωx - the Polyakov loop in the representation r.

For Nt = 1 it coincides with the 2d XY model

Z(βt, βs = 0, Nt = 1) =
∫ 2π

0

∏
x

dωx

2π
exp

βt
∑
x,n

cos(ωx − ωx+en)


In this case the dynamics of the system is governed by the XY model with
the inverse temperature βt. For Nt ≥ 2 the model is of the XY -type, i.e. it
describes interaction between nearest neighbours spins (Polyakov loops)
and possesses the global U(1) symmetry.



3. BKT phase transition at βt � 1

Z(βt � 1, βs = 0) =
∞∑

r(x)=−∞
exp

−1

2
β̃
∑
x

2∑
n=1

(r(x)− r(x + en))
2

 .

This is the Villain version of the XY model in the dual formulation with an
effective coupling β̃ given by

β̃ = Nt/βt = g2/T .

This shows that the region βs = 0, βt � 1 is described by the XY model,
in particular

βcr = 2/(πg2) , η(Tc) = 1/4



V. Perturbative calculations at high temperatures

1. Correlation function of the Polyakov loops

Two-point correlation function in the XY model

ΓXY (R) = 1 −
g2

2
D(R) +

g4

8
D(R) [D(R)− 1]

D(R) = G0 −GR � (1/π) ln | R |

Perturbative β function of the XY model vanishes at weak coupling

β(g) = 0

The Polyakov loop correlation

Pj(C) = 1− g2 C1 + g4 C2 + O(g6)

C1 =
1

2
j2 β D(R) ,

C2 =
1

8
j4 β2 D2(R) −

1

4
j2 atβ D(R)

(
1− β−1

t Dn1

)



From last formulae one can extract the potential between test charges

Vj(R) = −
1

β
lnPj(R) =

1

2
g2j2

[
1 +

1

2βt
(1− β−1

t Dn1)

]
D(R) .

The perturbative coefficients of the Polyakov loop correlations behave qual-
itatively and quantitatively similar to those of the two-point correlation func-
tion of the 2d XY model.

2. ’t Hooft line

Dπ(R) = exp
[
−

1

2
B(R)

]



At zero temperature and for R = (x2
0 + x2

1 + x2
2)

1/2 � 1

B(R) = G0/(g2a)−
1

2πg2aR

At high temperature and for R = (x2
1 + x2

2)
1/2 � 1, τ = 0

B(R,0) =
1

πg2β
lnR

At high temperature and for R = 0, τ = atx0

B(0, τ) =
β

g2a2
s

(
τ

β

)



VI. Effective vortex model at finite temperatures

The effective monopole action at finite temperatures and in the presence
of sources for the Wilson and ’t Hooft loops

Zηs = Zsw(η, s) Zmon(η, s) .

Effective monopole action

Smon = −π2 ∑
x,x′

m(x)Gxx′m(x′)− π
∑
x

h(x)m(x)

To derive effective vortex model at high temperatures one uses the asymp-
totics of Green function at β → 0

Gx =
1

g2β
G2d

x +
β

g2a2
s
B2(τ/β)δx,0 +

β3

6g2a4
s
B4(τ/β)∆x +O(β5) ,

where τ = atx0, G2d
x is the Green function of the 2d model, Bn(z) are

the Bernoulli polynomials and ∆x is the 2d Laplace operator

∆x =
2∑

n=1

[
δx,0 −

1

2
(δx+en,0 + δx−en,0)

]



Effective 2d vortex model takes the form, x = (x1, x2)

Zvor(η, s) =
∞∑

m(x)=−∞
δ

[∑
x

m(x)

]

exp

− π2

g2β

∑
x,x′

m(x)G2d
xx′m(x′) + κ lnW [m(x)]− π

∑
x

h(x)m(x)


The weight is given by

W [m(x)] =
∞∑

m(x,t)=−∞
δ

m(x)−
Nt−1∑
t=0

m(x, t)


exp

−π2 ∑
x,x′

∑
t,t′

m(x, t)(Gxx′,tt′ −
1

g2β
G2d

xx′)m(x′, t′)


κ = 0 corresponds to 2d XY model; κ = 1 corresponds to 3d U(1)
gauge model at finite temperature



In the leading order τ/β � 1 effective 2d vortex model takes the form at
zero sources, x = (x1, x2)

Zvor =
∞∑

m(x)=−∞
δ

[∑
x

m(x)

]

exp

− π2

g2β

∑
x,x′

m(x)Gxx′m(x′)− κ0
∑
x

m2(x)− κ1m(x)∆xx′m(x′)



κ0 = κ
π2β

6g2a2
s

κ1 = κ
π2β3

180g2a4
s



The vortex model can be mapped onto the model of the sine-Gordon type

Zvor =
∫ ∏

x
dαx exp

−∑
x,x′

αxBxx′αx′ + y
∑
x

cosαx



Bxx′ =
g2β

4π
∆xx′ + κ

g2β5

720a4
s
∆xy∆yy′∆y′x′

y = 2exp

[
−

γπ2

g2β
+ κ

π2β

6g2a2
s

]

Sine-Gordon model can be analyzed by the conventional RG methods
where terms proportional to κ are treated perturbatively.

Such calculations give XY critical indices η(Tc) = 1/4 and ν = 1/2.



VII. Conclusions

• At finite temperature a deconfinement phase transition takes place to a
phase where the potential between test charges grows logarithmically

• In the limit βs = 0 this is BKT phase transition which belongs to the
XY model universality class

• At high temperatures Polyakov loop correlation and ’t Hooft line behave
qualitatively and quantitatively similar to 2-point function and disorder
operator of 2d XY model correspondingly

• Effective vortex model predicts critical behaviour similar to that of XY

model but this has to be confirmed numerically.

• MC simulations: next talk by M. Gravina


