
On the behaviour of the flux tube thickness
near the deconfinement transition.

M. Caselle

Bari, September 2008



Plan of the Talk

• Effective string models in Lattice Gauge Theories

– zero temperature results: Wilson loops
– finite temperature extension: Polyakov loop correlators

• Effective string predictions for the flux tube thickness

– high temperature behaviour of the flux tube thickness
– dimensional reduction and the Svetistky-Yaffe conjecture

Main goal: show that the effective string approach predicts a log to linear
transition in the R dependence of the flux tube width and test this result
with MC simulations and dimensional reduction .
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String theory and Lattice Gauge Theories

Conjecture: Two color sources in a confining gauge theory are bound
together by a thin flux tube, which can fluctuate like a massless string.

Main consequence:

• linearly rising potential

• quantum corrections to the interquark potential (Lüscher term)

• log increase of the flux tube thickness
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• Potential V (R) between two external, massive quark and anti-quark
sources from Wilson loops

〈W (L,R)〉 ∼ e−LV (R) (large L)

V (R) = − lim
L→∞

1
L

log 〈W (L,R)〉

In the limit of infinite mass quarks (pure gauge theory) we find the
famous “area law” for the Wilson loop

• Area law ↔ linear potential

〈W (L,R)〉 ∼ e−σRL; V (R) = σR+ . . .

σ is the string tension
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Quantum corrections and effective models

The area law is exact in the strong coupling limit (β → 0). As the
continuum limit (β → ∞) is approached quantum corrections become
important.

• Leading correction for large R: The “Lüscher term”

V (R) = σ R− π

24
d− 2
R

+O

(
1
R2

)
.
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It can be obtained summing up the quantum fluctuations of the transverse
degrees of freedom of the string treated as d−2 massless modes [Lüscher,
Symanzik and Weisz, (1980)]. This id the “gaussian approximation” of
the effective string:

〈W (L,R)〉 ∼ e−σRL
∫
DXie−

σ
2

R
dx0dx1{(∂0

~X)2+(∂1
~X)2+int.s}

• Can also be derived assuming a “SOS picture” for the fluctuations of the
surface bordered by the Wilson loop → two-dimensional conformal field
theory of d− 2 free bosons

• Consequence: Using known results of CFT’s we can predict the behaviour
of the Wilson loop for finite values of L.

7



< W (R,L) >= e−(σRL)Zq(R,L)
Where Zq(R,L) is the partition function of d − 2 free massless scalar
fields living on the rectangle defined by the Wilson loop: R× L

Zq(R,L) ∝
[
η(τ)√
R

]−d−2
2

where η(τ) is the Dedekind η function and τ = iL/R.

• The L↔ R simmetry is ensured by this identity

η

(
−1
τ

)
=
√
−iτ η(τ)

known as the “modular” transformation of the η.
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• Defining: F (R,L) ≡ − log < W (R,L) > and expanding the Dedekind
function

η(τ) = q
1
24

∞∏
n=1

(1− qn) ; q = e2πiτ ,

one finds

F (R,L) = σRL−(d− 2)
[
πL

24R
+

1
4

logR
]

+ ...

From which we find as anticipated:

V (R) = σ R− π

24
d− 2
R

+O

(
1
R2

)
.
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Montecarlo test of the Lüscher term.

The following ratio is particularly useful to single out the effective string
contribution from a collection of Wilson loops (it requires a very precise
knowledge of σ):

R(L, n) ≡ 〈W (L+ n,L− n)〉
〈W (L,L)〉

exp(−n2σ)

It is easy to see that R(L, n) depends only on t = n/L:

R(L, n) = F (t) =

η(i)
√

1− t

η
(
i1+t
1−t

)


1/2
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The effective string model assumes that all confining gauge theories share
the same behaviour for the interquark potential (for large enough R)
with no dependence on the gauge group and a trivial (linear) dependence
on the space-time dimensions.

The 3d gauge Ising model (dual of the standard 3d spin Ising model) is
a perfect choice for testing the string predictions.

Duality allows high precision simulations for very large values of R and L

Very good agreement in the large R regime is found but corrections
appear as R decreases and suggest that a more sophisticated effective
description is needed.
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The Nambu-Goto string

Action ∼ area of the surface spanned by the string in its motion:

S = −σ
∫
dξ0dξ1

√
det gαβ (1)

where gαβ is the metric “induced” on the w.s. by the embedding:

gαβ =
∂XM

∂ξα
∂XN

∂ξβ
GMN (2)

ξα = world-sheet coords. (ξ0 = proper time, ξ1 spans the extension of the
string)
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Connection with the gaussian model

• One can use the world-sheet re-parametrization invariance of the NG
action to choose the so called “physical gauge”:

– The w.s. coordinates ξ0, ξ1 are identified with two target space
coordinates x0, x1

• One can study the 2d QFT for the d − 2 transverse bosonic fields with
the gauge-fixed NG action

Z =
∫
DXie−σ

R
dx0dx1

√
1+(∂0

~X)2+(∂1
~X)2+(∂0

~X∧∂1
~X)2

= e−σRL
∫
DXie−

σ
2

R
dx0dx1{(∂0

~X)2+(∂1
~X)2+int.s}
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The anomaly problem

• Problem: This gauge fixing is anomalous (unless we are in d = 26)

• “Effective” solution: It can be shown (Olesen, 1985) that the corrections
due to the anomaly decay as 1/R3 thus maybe one can trust the
perturbative expansion up to the order 1/R2 i.e. the first order beyond
the gaussian approximation.

• “Stringy” solution: The Nambu-Goto action can be rewritten (order by
order in 1/L) so as to be anomaly-free in any dimension (Polchinski and
Strominger, 1991):
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Polchinski and Strominger action:

Seff =
1

4π

∫
dτ+dτ−

[
1
a2

(∂+X · ∂−X)

+
(
D − 26

12

)
(∂2

+X · ∂−X)(∂+X · ∂2
−X)

(∂+X · ∂−X)2
+O(L−3)

]
, (3)

where τ± are light-cone world-sheet coordinates, and a is a length scale
related to the string tension.

As a consistency check, it can be shown (Lüscher, Weisz, Drummond,
Hari Dass, Mattlock, 2004) that the first perturbative correction beyond
the gaussian contribution in both frameworks is the same.
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Finite Temperature LGTs

• Finite temperature can be realized by imposing periodic boundary
conditions in the (euclidean) “time” direction

• The (finite) temperature is given by the inverse of the lattice length in
the compactified time direction T = 1/L

• A new set of observables can be constructed: the Polyakov loop which is
the trace of the ordered product of timelike variable along a timelike axis
of the lattice and behaves as an order parameter for the deconfinement
phase transition

• The interquark potential is given by the correlator of two Polyakov loops.

V (R, T ) = − log(< P (x)P+(x+R) >) T = 1/L
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Effective string description for Finite Temperature LGTs

The main change with respect to the zero temperature case is that now
the string world sheet is bordered by the two Polyakov loops in one direction
but is periodic in the ”time” direction, thus it has a cylindric geometry.

There is no more L ↔ R simmetry: the modular transformation of the
Dedekind function τ → −1

τ allows to relate the T and R dependences of
the interquark potential, i.e. to predict the behaviour of σ as a function of
the temperature T

In string theory this modular transformation is known as open ↔ closed
string duality
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Using again the gaussian approximation and 2d CFT we find in this case

< P (x)P+(x+R) >∝ e−(σRL)

[
η(i

L

2R
)
]−(d−2)

to be compared with

< W (R,L) >∝ e−(σRL)

[
η(iLR)
√
R

]−d−2
2

the two expression give the same Lüscher term
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Nambu-Goto contribution to the Polyakov loop
correlators

In the Polyakov loop case the Nambu Goto partition function can be
evaluated exactly if one neglects the anomaly

F =
1
2

∑
k

cke−LEk(R) ,

where the coefficient ck are the partitions of integers (they come form the
expansion of the Dedekind function).
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The spectrum is

Ek(R) = σR

√
1 +

2π
σR2

(
k − d− 2

24

)

This spectrum coincides with that conjectured by Arvis long ago (1982)
by (formal) quantization of the NG action in the physical gauge.
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Comparison with MC simulations

Duality allows to test the above predictions can be tested with a precision
δG
G which in some cases reaches 10−4.

In the comparison there is no free parameter. The figures are not the
result of a fitting procedure.

The agreement at large distance with NG is impressive. At shorter
distances deviations appear. Liouville mode?
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The flux tube thickness.

The flux density in presence of a pair of Polyakov loops is:

< Fµ,ν(x0, x1, h,R) >=
< P (0, 0)P+(0, R)Uµ,ν(x0, x1, h) >

< P (0, 0)P+(0, R) >
− < Uµ,ν >

where x0 denotes the timelike direction, x1 is the direction of the axis
joining the two Polyakov loops and h denotes the transverse direction.
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To evaluate the flux tube thickness we fix x2 = R/2 to minimize
boundary effects. (thanks to the periodic b.c. in the “temperature”
direction we can instead choose any value of x0)

In the x1 direction the flux density shows a gaussian like shape, the
width of this gaussian is the “flux tube thickness”: w(R,L). w(R,L)
only depends on the interquark distance R and on the lattice size in the
compactified timelike direction L, i.e. on the inverse temperature of the
model

By tuning L we can thus study the flux tube thickness in the vicinity of
the deconfinement transition
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Shape of the flux density generated by a 30 × 30 Wilson loop in the Ising gauge model

(at β = 0.7460). The dashed line is the gaussian fit.
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Effective string predictions for the flux tube thickness.

In the Nambu-Goto framework one should sum over all the surfaces
bordered by the Polyakov loops and the plaquette with a weight proportional
to the surface area.

Fµν(x, h) =
∑
surf

e−σArea[surf]

w2(x) =
∫

dh h2 Fµν(x, h)∫
dh Fµν(x, h)

=
∫

dh h2
∑

surf e
−σArea[surf]∫

dh
∑

surf e
−σArea[surf]
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If we assume the size of the plaquette to be negligible with respect to
the other scales, perform a “physical” gauge fixing and denote as h0 the
transverse coordinate of the plaquette then:

w2(~x0) =

∫
dh0 h0

2
∫
h(~x0)=h0

[Dh(~x)] e−σS[h]∫
dh0

∫
h(~x0)=h0

[Dh(~x)] e−σS[h]

which can be rewritten as

w2(~x0) =
∫

[Dh(~x)] h(~x0)2e−σS[h]∫
[Dh(~x)] e−σS[h]

≡ 〈h2(~x)〉

with S[h] = σ
∫

d2x
√

1 + (Oh)2
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This expectation value is singular and must be regularized using for
instance a point splitting prescription.

σw2(~x) = 〈h(~x+ ~ε)h(~x)〉 ≡ G(~x+ ~ε; ~x)

The U.V. cutoff ε has a natural physical meaning: ε ∼ plaquette size.

Dealing with the whole NG action turns out to be too difficult. We
resort again to the free boson approximation (”SOS picture”)

S[h] ' σ
∫

d2x [1 + 1/2(Oh)2]
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Then G(~x+~ε; ~x) is the Green function of the Laplacian on the cylinder.

which can be written (choosing the reference frame so as to have the
two loops located in ±R/2) as:

G2(z; z0) = − 1
2π

log
∣∣∣∣θ1 [π(z − z0)/2R]
θ2 [π(z + z̄0)/2R]

∣∣∣∣
with q = e−πL/2R

Setting z0 = z + ε and performing an expansion in ε one finds:

σw2(z) = − 1
2π

log
π|ε|
R

+
1

2π
log |2θ2 (π Re z/R) /θ′1|
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A similar calculation in the Wilson loop case gives

σw2(z) = − 1
2π

log
π|ε|
R

+
1

2π
log
∣∣∣∣2θ2(π Re z/R)θ4(iπ Im z/R)

θ′1 θ3(πz/R)

∣∣∣∣
with q = e−πL/R.

In both cases the dominant term diverges as 1
2π logR

Both results assume L >> R
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Performing a dual tranformation we can obtain the behaviour for R >>
L i.e. in the high T regime. In this case the Green function can be written
as:

G(z; z0) = − 1
2π

log
∣∣∣∣θ1 [π(z − z0)/L]
θ4 [π(z − z̄0)/L]

∣∣∣∣− Imz Imz0

LR
q = e−2πR/L

and we have:

σw2(z) = − 1
2π

log
π|ε|
L

+
1

2π
log |θ4(2πi Im z/L)/θ′1| −

( Im z)2

LR

Expanding in powers of R/L we find

σw2(z) = − 1
2π

log
2π|ε|
L

+
R

4L

This time the R dependence is linear !!
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Summary of the result for the Polyakov loop correlator

• Low temperature

w2 ∼ 1
2πσ

log(
R

Rc
) + . . . (L >> R >> 0)

• High temperature (but below the deconfinement transition)

w2 ∼ 1
2πσ

(
πR

2L
+ log(

L

2π|ε|
) + . . .) (R >> L)

Log increase of the flux tube width at zero temperature but Linear
increase near the deconfinement transition!
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Comparison with MC simulations.

The 3d gauge Ising model is perfectly suited for studying the flux tube
width.

Thanks to duality one can create a “vacuum” containing the Wilson
loop or the Polyakov loop correlators by simply frustrating the links in the
dual lattice orthogonal to a surface bordered by the loops.

Any choice of the surface is equivalent.
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Measuring the energy operator (which is the dual of the plaquette
operator) in this vacuum one can thus evaluate the ratio:

< P (0, 0)P+(0, R)Uµ,ν(x0, x1, h) >
< P (0, 0)P+(0, R) >

for any value of R and L with the same statistical uncertainty of the
expectation value of the plaquette in the usual vacuum < Uµ,ν >.
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We used Wilson loops to test the low T predictions and Polyakov loop
correlators for the high T ones.

• Low T we tested several values of β in the range 0.6543 ≤ β ≤ 0.7516
and several sizes of the Wilson loops (ranging from 122 to 642) so as
to test a wide range of R

√
σ values. The log fit of σw2 as a function

of R
√
σ shows a very good χ2 with an angular coef. 0.150(5) to be

compared with 1/2π ∼ 0.15915...

• High T we studied the model at β = 0.75180 which corresponds to
aTc = 1/8 and a2σ = 0.0105(2) and tested lattice sizes 9 ≤ L ≤ 16 i.e.
temperatures ranging from T = Tc

2 to T = 8
9Tc For all the values L ≥ 10

the linear fit has very good χ2, but the ang.coef. shows deviations with
respect to the expected value 1/(4σL).
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Squared width of the flux tube in units of sigma for the ZZ2 gauge theory. The open

symbols are Wilson loop data while the black circles refer to the (dual) Ising interface.
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Dimensional reduction and the Svetitsky-Yaffe conjecture

• ”weak form of the S-Y conjecture:”

The high temperature behaviour of a (d+1) LGT with gauge group G
can be effectively described by a spin model in d dimensions with (global)
symmetry group C (the Center of G).

• “strong form of the S-Y conjecture:”

If both the spin model and the LGT have continuous phase transitions
then they share the same universality class.

The mapping between the LGT and the effective spin model is based on
the following identifications
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LGT spin model

Low T confining phase High T symmetric phase

Polyakov loop (“C-odd”) spin operator

Plaquette operator (“C-even”) energy operator

Thermal perturbation energy perturbation

string tension (σ/T ) mass of the theory

Polyakov loop correlator spin-spin correlator
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These mappings should be intended in a “renormalization group sense”
i.e. the Polyakov loop operator is mapped into a linear combination of all
the (C-odd) operators in the spin model. For instance, in the 2d Ising case
the whole conformal family of the spin operator. This combination will be
dominated by the relavant(s) operator(s). In the Ising case only one: the
spin operator.

In the case of the plaquette operator the mapping will be in general a
linear combination of the energy and the identity families.
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Duality and the closed string interpretation

It is interesting to look at this result from the “dual channel”, i.e.
perform a modular transformation t → 1/t of the open string channel
1-loop free energy.

50



The result of the transformation is

F = 2πL
(π
σ

)d
2−2 ∑

k

ckG (R;M(k))

where G (R;M) = propagator of a scalar field of mass M over the spatial distance ~R

between the two D0-branes:

G(R;M) =
1

2π

„
M

2πR

«d−3
2

Kd−3
2

(MR) ,

the mass M(k) is that of a closed string state with k representing the total oscillator

number:

M
2
(k) = (σL)

2

»
1 +

8π

σL2

„
k −

d− 2

24

«–
This expression agrees with that obtained by Lüscher and Weisz (2005) with a different

approach.
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Two important remarks

• From the lowest mass (k = 0, m = 1) in the closed string channel:

M2(1, 0) = (σL)2

[
1− π(d− 2)

3σL2

]
one can obtain an estimate for the deconfinement temperature (recall
that T = 1/L) which in this framework appears as a consequence of the
tachionic state present in the NG string (Olesen, 1985):

Tc√
σ

=

√
3

π(d− 2)

This estimate turns out to be in very good agreement with MC
simulations for several LGT’s.
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• In the large R and small L limit the NG partition function reduces to
a single Bessel function. This means that the the NG effective string
predicts the following behaviour for the Polyakov loop correlator:

〈P (0)P †(R)〉 ∼ Kd−3
2

(MR) ,

with M ∼ σL. This is exactly the limit in which dimensional reduction
occurs (“Svetitsky-Yaffe” conjecture). From the QFT approach to spin
models we know that at high temperature and large distance whatever
model we study the spin spin correlator will be dominated by the state
of lowest mass whose propagator in d′ dimensions is given by

G(R) ∼ Kd′−2
2

(mR)

Since d′ = d − 1 this result exactly coincides with what we obtain with
the NG string.
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Agreement between 2d spin model estimates and
effective string predictions.

With the Nambu-Goto effective string we obtain for the Polyakov loop
correlator:

〈
P (0, 0)P (0, R)+

〉
=
∞∑
n=0

|vn|2
(
Ẽn
π

)
K0(ẼnR).

This expression is expected to be reliable in the large distance limit. In
this limit only the lowest state (n = 0) survives and we end up with a single
K0 function:
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lim
R→∞

〈
P (0, 0)P (0, R)+

〉
∼ K0(Ẽ0R).

The spin-spin correlator of any 2d spin model in the symmetric phase is
given by

lim
R→∞

〈
σ(0, 0)σ(0, R)+

〉
∼ K0(mR).

The two expression coincide, they are universal (no dependence on the

symmetry group) and allow to identify m with Ẽ0 = σL
{

1− π
3σL2

}1/2
.

which, at the first order in 1/L becomes

m↔ σL = σ/T

55



Effective spin model description of the the flux tube
thickness.

Following the S-Y mapping the flux density in the Ising LGT in (2+1)
dimensions becomes the ratio of connected correlators:

〈σ(x1)ε(x2)σ(x3)〉
〈σ(x1)σ(x3)〉

in the high temperature phase of the 2d Ising model in zero magnetic
field.

The large distance behaviour of this correlator can be evaluated using
the Form Factor approach.

56



Width of the flux tube

The width of the flux tube evaluated at the midpoint between the two
spins is given by

w2(r) =
r2

2K0(2mr)

∫ ∞
−∞

dx
x2

1 + x2
e−2mr

√
1+x2

.

where R ≡ 2r is the distance between the two spins.
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In the large R limit we thus obtain

w2 ' 1
2π

(
πR

2m
− π

2m2
+ . . .

)
(L ∼ 1)

to be compared with the effective string result:

w2 ∼ 1
2π

(
πR

2σL
+ log(

L

2π
) + . . .

)
(R >> L)

linear increase of the width in both cases but with a different T

dependence of the coefficent m = Ẽ0 = σ
T

√
1− πT 2

3σ = σL
√

1− π
3σL2

This discrepancy is most likely due to the free bosonic approx in the
string calculation.
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Conclusions

• The effective string approach predicts a logarithmic increase of the flux
tube width at low temperature and a linear increase at high T (but still
in the confining regime)

• This scenario is confirmed by MC simulations in the 3d gauge Ising
model both at low and at high T, but an increasing discrepancy in the
coefficient of the linear term appears as Tc is approached

• Also dimensional reduction predicts a linear increase of the flux tube
thickness at high temperature, but with a T dependence of the coefficient
wich could explain the MC results.
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The snake algorithm.

Goal: compute the ratio G(R)/G(R+ 1).

Proposal: Use duality and factorize the ratio of partition functions in
such a way that for each factor the partition functions differ just by the
value of J〈ij〉 at a single link

ZL×R
ZL×(R+1)

=
ZL×R,0
ZL×R,1

...
ZL×R,M
ZL×R,M+1

...
ZL×R,L−1

ZL×R,L
,

where L×R,M denotes a surface that consists of a L×R rectangle with
a M × 1 column attached.
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Figure 1: Sketch of the surface denoted by L×R,M . In the example, L = 6, R = 8

and M = 2. The circles indicate the links that intersect the surface.
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Each of the factors can be written as expectation value in one of the
two ensembles:

ZL×R,M+1

ZL×R,M
=

∑
si=±1 exp(−β̃HL×R,M(s)) exp(−2β̃sksl)

ZL×R,M
,

where < k, l > is the link that is added going from L×R,M to L×R,M+1.

Further improvement: hierarchical updates.

Result: the error show no dependence on R !!
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