Lattice Liouville Field Theory in d = 2

Giuseppe Lacagnina, INFN Sezione di Milano

Bari, September 3rd, 2008

・ロト ・ 理 ト ・ ヨ ト ・

Work with: Agostino Patella, University of Wales at Swansea, UK

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Plan of the talk

- 8 Renormalization Group and Continuum Limit
- 4 Simulations and results

・ 同 ト ・ ヨ ト ・ ヨ ト …

Liouville Field Theory in d = 2

Introduction and motivations

$$S = \frac{1}{\beta^2} \int d^2x \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- the field φ and the parameter β are dimensionless; m is a mass
- at the classical level, one has invariance of the action under $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi 2s$
- while at the quantum mechanical level, $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi - 2s \cdot (1 + \frac{\beta^{2}}{8\pi})$

Liouville Field Theory in d = 2

Introduction and motivations

$$S = \frac{1}{\beta^2} \int d^2x \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- the field ϕ and the parameter β are dimensionless; *m* is a mass
- at the classical level, one has invariance of the action under $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi 2s$
- while at the quantum mechanical level, $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi - 2s \cdot (1 + \frac{\beta^{2}}{8\pi})$

Liouville Field Theory in d = 2

Introduction and motivations

$$S = \frac{1}{\beta^2} \int d^2x \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- the field φ and the parameter β are dimensionless; m is a mass
- at the classical level, one has invariance of the action under $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi 2s$
- while at the quantum mechanical level, $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi - 2s \cdot (1 + \frac{\beta^{2}}{8\pi})$

Liouville Field Theory in d = 2

Introduction and motivations

• it is a scalar model in *d* = 2, described by the Euclidean action:

$$S = \frac{1}{\beta^2} \int d^2x \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- the field φ and the parameter β are dimensionless; m is a mass
- at the classical level, one has invariance of the action under $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi 2s$
- while at the quantum mechanical level, $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi - 2s \cdot (1 + \frac{\beta^{2}}{2})$

イロト イヨト イヨト

Liouville Field Theory in d = 2

Introduction and motivations

$$S = \frac{1}{\beta^2} \int d^2x \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- the field φ and the parameter β are dimensionless; m is a mass
- at the classical level, one has invariance of the action under x^μ → e^sx^μ, φ → φ − 2s
- while at the quantum mechanical level, $x^{\mu} \rightarrow e^{s} x^{\mu}, \phi \rightarrow \phi - 2s \cdot (1 + \frac{\beta^{2}}{8\pi})$

Liouville Field Theory in d = 2

Introduction and motivations

• it is a scalar model in *d* = 2, described by the Euclidean action:

$$S = \frac{1}{\beta^2} \int d^2x \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- the field φ and the parameter β are dimensionless; m is a mass
- at the classical level, one has invariance of the action under x^μ → e^sx^μ, φ → φ − 2s
- while at the quantum mechanical level,

$$x^{\mu}
ightarrow e^{s} x^{\mu}, \phi
ightarrow \phi - 2s \cdot \left(1 + rac{eta^{2}}{8\pi}
ight)$$

イロン 不良 とくほう 不良 とうほ

- Liouville Field Theory (LFT) arises in string theory in various situations;
- Recent work suggests that LFT might have possible applications to high energy QCD as an effective theory for gluon phenomenology (see lancu and McLerran, 2007);
- it is a challenge to put LFT on a lattice and perform numerical simulations;
- the issue of a continuum limit is subtle and potentially very interesting.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Liouville Field Theory (LFT) arises in string theory in various situations;
- Recent work suggests that LFT might have possible applications to high energy QCD as an effective theory for gluon phenomenology (see lancu and McLerran, 2007);
- it is a challenge to put LFT on a lattice and perform numerical simulations;
- the issue of a continuum limit is subtle and potentially very interesting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Liouville Field Theory (LFT) arises in string theory in various situations;
- Recent work suggests that LFT might have possible applications to high energy QCD as an effective theory for gluon phenomenology (see lancu and McLerran, 2007);
- it is a challenge to put LFT on a lattice and perform numerical simulations;
- the issue of a continuum limit is subtle and potentially very interesting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Liouville Field Theory (LFT) arises in string theory in various situations;
- Recent work suggests that LFT might have possible applications to high energy QCD as an effective theory for gluon phenomenology (see lancu and McLerran, 2007);
- it is a challenge to put LFT on a lattice and perform numerical simulations;
- the issue of a continuum limit is subtle and potentially very interesting.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Lattice Model

To put the theory on the lattice, we start by defining the Euclidean action

$$S(\beta, m^2, L, \phi) = \frac{1}{\beta^2} \sum_{x \in R_L} \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

Is the two-dimensional discrete Laplace operator

- L is the number of lattice sites in each direction
- lattice units are assumed
- periodic boundary conditions are taken for the field

ヘロン ヘアン ヘビン ヘビン

The Lattice Model

To put the theory on the lattice, we start by defining the Euclidean action

$$S(\beta, m^2, L, \phi) = \frac{1}{\beta^2} \sum_{x \in R_L} \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- *L* is the number of lattice sites in each direction
- lattice units are assumed
- periodic boundary conditions are taken for the field

・ロト ・ 理 ト ・ ヨ ト ・

The Lattice Model

To put the theory on the lattice, we start by defining the Euclidean action

$$S(\beta, m^2, L, \phi) = \frac{1}{\beta^2} \sum_{x \in R_L} \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- *L* is the number of lattice sites in each direction
- lattice units are assumed
- periodic boundary conditions are taken for the field

・ロト ・ 理 ト ・ ヨ ト ・

The Lattice Model

To put the theory on the lattice, we start by defining the Euclidean action

$$S(\beta, m^2, L, \phi) = \frac{1}{\beta^2} \sum_{x \in R_L} \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- L is the number of lattice sites in each direction
- lattice units are assumed

periodic boundary conditions are taken for the field

ヘロト ヘアト ヘビト ヘビト

The Lattice Model

To put the theory on the lattice, we start by defining the Euclidean action

$$S(\beta, m^2, L, \phi) = \frac{1}{\beta^2} \sum_{x \in R_L} \left[-\frac{1}{2} \phi(x) \Box \phi(x) + m^2 e^{\phi(x)} \right]$$

- L is the number of lattice sites in each direction
- lattice units are assumed
- periodic boundary conditions are taken for the field

ヘロト ヘアト ヘビト ヘビト

a few more comments:

- finite volume and finite lattice spacing break scale invariance explicitely;
- scale invariance is a subgroup of conformal invariance;
- the minimum for the classical action is at $\phi \to -\infty$ which is not compatible with Monte Carlo methods: two approaches are possible

イロン 不良 とくほう 不良 とうほ

a few more comments:

- finite volume and finite lattice spacing break scale invariance explicitely;
- scale invariance is a subgroup of conformal invariance;
- the minimum for the classical action is at $\phi \to -\infty$ which is not compatible with Monte Carlo methods: two approaches are possible

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

a few more comments:

- finite volume and finite lattice spacing break scale invariance explicitely;
- scale invariance is a subgroup of conformal invariance;
- the minimum for the classical action is at $\phi \to -\infty$ which is not compatible with Monte Carlo methods: two approaches are possible

イロン 不良 とくほう 不良 とうせい

a few more comments:

- finite volume and finite lattice spacing break scale invariance explicitely;
- scale invariance is a subgroup of conformal invariance;
- the minimum for the classical action is at $\phi \to -\infty$ which is not compatible with Monte Carlo methods: two approaches are possible

イロン 不得 とくほど 不良 とうほう

First approach: constrained field

the field is decomposed

$$\phi(x) = \phi_0 + \chi(x)$$
$$\sum_x \chi(x) = 0$$

which implies

$$S(\beta, m^2, L, \phi) = S(\beta, m^2 e^{\phi_0}, L, \chi)$$

a change in the average field ϕ_0 is equivalent to a change of m. The simulation then corresponds to a model in which $[d\chi]$ only is integrated in the functional integrals, leaving ϕ_0 free.

・ロト ・ 理 ト ・ ヨ ト ・

First approach: **constrained field** the field is decomposed

$$\phi(\mathbf{x}) = \phi_0 + \chi(\mathbf{x})$$
$$\sum_{\mathbf{x}} \chi(\mathbf{x}) = \mathbf{0}$$

which implies

$$S(\beta, m^2, L, \phi) = S(\beta, m^2 e^{\phi_0}, L, \chi)$$

a change in the average field ϕ_0 is equivalent to a change of *m*. The simulation then corresponds to a model in which $[d\chi]$ only is integrated in the functional integrals, leaving ϕ_0 free.

ヘロン ヘアン ヘビン ヘビン

First approach: **constrained field** the field is decomposed

$$\phi(\mathbf{x}) = \phi_0 + \chi(\mathbf{x})$$
$$\sum_{\mathbf{x}} \chi(\mathbf{x}) = \mathbf{0}$$

which implies

$$S(\beta, m^2, L, \phi) = S(\beta, m^2 e^{\phi_0}, L, \chi)$$

a change in the average field ϕ_0 is equivalent to a change of *m*. The simulation then corresponds to a model in which $[d_{\chi}]$ only is integrated in the functional integrals, leaving ϕ_0 free.

ヘロン ヘアン ヘビン ヘビン

First approach: **constrained field** the field is decomposed

$$\phi(\mathbf{x}) = \phi_0 + \chi(\mathbf{x})$$

 $\sum_{\mathbf{x}} \chi(\mathbf{x}) = \mathbf{0}$

which implies

$$S(\beta, m^2, L, \phi) = S(\beta, m^2 e^{\phi_0}, L, \chi)$$

a change in the average field ϕ_0 is equivalent to a change of *m*. The simulation then corresponds to a model in which $[d_{\chi}]$ only is integrated in the functional integrals, leaving ϕ_0 free.

ヘロア ヘビア ヘビア・

Second approach: point source

a current interaction is added to the action with a point source

$$S_{\text{curr}} = rac{lpha}{eta^2} \sum_{x \in R_L} \phi(x) \delta(x - x_0)$$

which has a stable minimum configuration (found by numerical analysis, $\alpha \in [0, 1]$) In this case the functional integrations are on the whole field $[d\phi]$.

・ロト ・ 理 ト ・ ヨ ト ・

Second approach: point source

a current interaction is added to the action with a point source

$$S_{\text{curr}} = \frac{\alpha}{\beta^2} \sum_{x \in R_L} \phi(x) \delta(x - x_0)$$

which has a stable minimum configuration (found by numerical analysis, $\alpha \in [0, 1]$) In this case the functional integrations are on the whole field $[d\phi]$.

<ロ> (四) (四) (三) (三) (三)

Second approach: point source

a current interaction is added to the action with a point source

$$S_{\text{curr}} = \frac{\alpha}{\beta^2} \sum_{x \in R_L} \phi(x) \delta(x - x_0)$$

which has a stable minimum configuration (found by numerical analysis, $\alpha \in [0, 1]$) In this case the functional integrations are on the whole field $[d\phi]$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Second approach: point source

a current interaction is added to the action with a point source

$$S_{\text{curr}} = \frac{\alpha}{\beta^2} \sum_{x \in R_L} \phi(x) \delta(x - x_0)$$

which has a stable minimum configuration (found by numerical analysis, $\alpha \in [0, 1]$) In this case the functional integrations are on the whole field $[d\phi]$.

ヘロン 人間 とくほ とくほ とう

- the constrained field method is not used to evaluate observables but only to investigate the continuum limit;
- both approaches are related to the true Liouville theory by analytical relations
- in particular, the second approach can be used to evaluate n-point functions of operators of the form

 $e^{\alpha\phi(x)}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- the constrained field method is not used to evaluate observables but only to investigate the continuum limit;
- both approaches are related to the true Liouville theory by analytical relations
- in particular, the second approach can be used to evaluate n-point functions of operators of the form

 $e^{\alpha\phi(x)}$

イロン 不良 とくほう 不良 とうせい

- the constrained field method is not used to evaluate observables but only to investigate the continuum limit;
- both approaches are related to the true Liouville theory by analytical relations
- in particular, the second approach can be used to evaluate n-point functions of operators of the form

 $e^{\alpha\phi(x)}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Some exact results have been obtained:

Partition functions (exact):

$$\begin{aligned} Z(\beta, m^2, L) &= \int D\chi d\phi_0 \; e^{-S(\beta, m^2 e^{\phi_0}, L, \chi)} = \\ &= \int d\phi_0 \; Z_c(\beta, m^2 e^{\phi_0}, L) = \\ &= \int \frac{d\tau^2}{\tau^2} \; Z_c(\beta, \tau^2, L) \end{aligned}$$

イロト 不得 トイヨト イヨト 二日 二

Some exact results have been obtained: Partition functions (exact):

$$Z(\beta, m^2, L) = \int D\chi d\phi_0 \ e^{-S(\beta, m^2 e^{\phi_0, L, \chi})} =$$
$$= \int d\phi_0 \ Z_c(\beta, m^2 e^{\phi_0, L}) =$$
$$= \int \frac{d\tau^2}{\tau^2} \ Z_c(\beta, \tau^2, L)$$

イロト 不得 トイヨト イヨト 二日 二

Results for $e^{\alpha\phi}$ (exact):

$$\left\langle \boldsymbol{e}^{\alpha\phi} \right\rangle_{c} = \frac{Z_{c}(\beta, m^{2}, L, \alpha\beta^{2}\delta_{x})}{Z_{c}(\beta, m^{2}, L)}$$
$$\left\langle \boldsymbol{e}^{\alpha\phi} \right\rangle = \frac{Z(\beta, m^{2}, L, \alpha\beta^{2}\delta_{x})}{Z(\beta, L)}$$

$$\left\langle e^{\alpha\phi} \right\rangle (\beta, m^2, L) =$$

$$= \frac{1}{Z(\beta, L)} \int \frac{d\tau^2}{\tau^2} \left(\frac{\tau^2}{m^2} \right)^{\alpha} Z_c \left\langle e^{\alpha\chi(x)} \right\rangle_c$$

Results for $e^{\alpha\phi}$ (exact):

$$\left\langle \boldsymbol{e}^{\alpha\phi} \right\rangle_{c} = \frac{Z_{c}(\beta, m^{2}, L, \alpha\beta^{2}\delta_{x})}{Z_{c}(\beta, m^{2}, L)}$$
$$\left\langle \boldsymbol{e}^{\alpha\phi} \right\rangle = \frac{Z(\beta, m^{2}, L, \alpha\beta^{2}\delta_{x})}{Z(\beta, L)}$$

$$\left\langle e^{\alpha\phi} \right\rangle (\beta, m^2, L) = \\ = \frac{1}{Z(\beta, L)} \int \frac{d\tau^2}{\tau^2} \left(\frac{\tau^2}{m^2}\right)^{\alpha} Z_c \left\langle e^{\alpha\chi(x)} \right\rangle_c$$

Approximated results

The following results hold at first order in an m^2 expansion. We need to define the following function:

$$g(L) = -\frac{1}{L^2} tr \Box^{-1}$$

$$g(L) = \frac{1}{2\pi} \ln\left(\frac{L}{L_c}\right) + O\left(\frac{1}{L^2}\right)$$

where $L_c = 0.736089(10)$

・ロト ・ 理 ト ・ ヨ ト ・

Approximated results

The following results hold at first order in an m^2 expansion. We need to define the following function:

$$g(L)=-\frac{1}{L^2}tr\Box^{-1}$$

$$g(L) = \frac{1}{2\pi} \ln\left(\frac{L}{L_c}\right) + O\left(\frac{1}{L^2}\right)$$

where $L_c = 0.736089(10)$

ヘロン ヘアン ヘビン ヘビン

Approximated results

The following results hold at first order in an m^2 expansion. We need to define the following function:

$$g(L)=-\frac{1}{L^2}tr\Box^{-1}$$

$$g(L) = rac{1}{2\pi} \ln\left(rac{L}{L_c}
ight) + O\left(rac{1}{L^2}
ight)$$

where $L_c = 0.736089(10)$

ヘロン ヘアン ヘビン ヘビン

we also calculated the correlation length at first order in m^2 :

$$\frac{\xi^2(\beta, m^2, L)}{L^2} =$$
$$= \frac{\beta^2}{m^2 L^2} \left(\frac{L}{L_0}\right)^{-\frac{\beta^2}{4\pi}} \left[1 + m^2 L^2 \left(\frac{L}{L_0}\right)^{\frac{\beta^2}{4\pi}} f(L)\right]$$

where f(L) is finite in the $L \to \infty$ limit.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

The following RG transformation

$$x
ightarrow e^{s} x$$

 $L
ightarrow e^{s} L$
 $m^{2}
ightarrow e^{-2\left(1+rac{\beta^{2}}{8\pi}
ight)s}m^{2} \equiv e^{-2\gamma s}m^{2}$

1	1	١
l	I)

leaves unchanged

$$Z_c, \frac{\xi}{L}, \beta$$

A fixed point is found at

 $L
ightarrow \infty, m
ightarrow 0$

around which we will try to construct a continuum limit for the unconstrained field theory. The perturbative origin of these results should be kept in mind.

The following RG transformation

$$x
ightarrow e^{s} x$$

 $L
ightarrow e^{s} L$
 $m^{2}
ightarrow e^{-2\left(1+rac{\beta^{2}}{8\pi}
ight)s}m^{2} \equiv e^{-2\gamma s}m^{2}$

(1)

leaves unchanged

$$Z_c, \frac{\xi}{L}, \beta$$

A fixed point is found at

 $L
ightarrow \infty, m
ightarrow 0$

around which we will try to construct a continuum limit for the unconstrained field theory. The perturbative origin of these results should be kept in mind.

The following RG transformation

$$egin{aligned} &x
ightarrow e^{s}x\ &L
ightarrow e^{s}L\ &m^{2}
ightarrow e^{-2\left(1+rac{eta^{2}}{8\pi}
ight)^{s}}m^{2}\equiv e^{-2\gamma s}m^{2} \end{aligned}$$

1	1	۱
l	I)

leaves unchanged

$$Z_c, \frac{\xi}{L}, \beta$$

A fixed point is found at

$$L
ightarrow \infty, m
ightarrow 0$$

around which we will try to construct a continuum limit for the unconstrained field theory. The perturbative origin of these results should be kept in mind.

Along an RG trajectory specified by some m_0, L_0 , the following result holds

$$\langle e^{\chi} \rangle_c (\beta, m^2, L) = A \left(\frac{L}{L_0} \right)^{2(\gamma - 1)}$$

 $\gamma = 1 + \frac{\beta^2}{8\pi}$

Giuseppe Lacagnina Lattice Liouville Field Theory in d = 2

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

we need to verify the scaling properties of 1 and 2 point functions

- along the RG trajectories in the $L \to \infty$ limit
- that should correspond to a continuum limit.
- In this limit we need to verify the dependence of 2 point functions on distance

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- we need to verify the scaling properties of 1 and 2 point functions
- along the RG trajectories in the $L \rightarrow \infty$ limit
- that should correspond to a continuum limit.
- In this limit we need to verify the dependence of 2 point functions on distance

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- we need to verify the scaling properties of 1 and 2 point functions
- along the RG trajectories in the $L \to \infty$ limit
- that should correspond to a continuum limit.
- In this limit we need to verify the dependence of 2 point functions on distance

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- we need to verify the scaling properties of 1 and 2 point functions
- along the RG trajectories in the $L \rightarrow \infty$ limit
- that should correspond to a continuum limit.
- In this limit we need to verify the dependence of 2 point functions on distance

ヘロン 人間 とくほ とくほ とう

2-point functions

 $\left\langle e^{\alpha\phi(x)}e^{\alpha\phi(y)} \right\rangle$

- behaviour is predicted by conformal invariance; power-law with the exponent a function of β
- previous preliminary results are encouraging...
- need to run more simulations to get final results

ヘロン ヘアン ヘビン ヘビン

æ

 $\left\langle e^{\alpha\phi(x)}e^{\alpha\phi(y)} \right\rangle$

- behaviour is predicted by conformal invariance; power-law with the exponent a function of β
- previous preliminary results are encouraging...
- need to run more simulations to get final results

・ロト ・ 理 ト ・ ヨ ト ・

 $\left\langle e^{\alpha\phi(x)}e^{\alpha\phi(y)} \right\rangle$

- behaviour is predicted by conformal invariance; power-law with the exponent a function of β
- previous preliminary results are encouraging...
- need to run more simulations to get final results

ヘロン 人間 とくほ とくほ とう

 $\left\langle e^{\alpha\phi(x)}e^{\alpha\phi(y)} \right\rangle$

- behaviour is predicted by conformal invariance; power-law with the exponent a function of β
- previous preliminary results are encouraging...
- need to run more simulations to get final results

ヘロト ヘアト ヘビト ヘビト

Simulation details

- field configurations where generated with a Hybrid Monte Carlo algorithm
- simulated volumes from L = 120 to L = 240
- one configuration in 100 saved to reduce correlations
- about 500 saved configurations per simulation

ヘロン 人間 とくほ とくほ とう

- field configurations where generated with a Hybrid Monte Carlo algorithm
- simulated volumes from L = 120 to L = 240
- one configuration in 100 saved to reduce correlations
- about 500 saved configurations per simulation

ヘロン 人間 とくほ とくほ とう

- field configurations where generated with a Hybrid Monte Carlo algorithm
- simulated volumes from L = 120 to L = 240
- one configuration in 100 saved to reduce correlations
- about 500 saved configurations per simulation

ヘロン 人間 とくほ とくほ とう

- field configurations where generated with a Hybrid Monte Carlo algorithm
- simulated volumes from L = 120 to L = 240
- one configuration in 100 saved to reduce correlations
- about 500 saved configurations per simulation

ヘロン 人間 とくほ とくほ とう

Simulation results for $\langle e^{\chi} \rangle_c$

Giuseppe Lacagnina Lattice Liouville Field Theory in d = 2

As a first estimate of the error on the numerical value of γ , we tried to deform the RG trajectory by

$$m^2
ightarrow e^{-2gs}m^2$$

where g differs from the analytic result by a given percentage. We tried deformations of

10, 5, 2.5, 1, 0.5

percent: the corresponding fits gave results for the exponent which where compatible with the expected result only for deformations of 0.5%.

イロン 不良 とくほう 不良 とうほ

As a first estimate of the error on the numerical value of γ , we tried to deform the RG trajectory by

$$m^2
ightarrow e^{-2gs}m^2$$

where g differs from the analytic result by a given percentage. We tried deformations of

10, 5, 2.5, 1, 0.5

percent: the corresponding fits gave results for the exponent which where compatible with the expected result only for deformations of 0.5%.

イロン 不良 とくほう 不良 とうほ

As a first estimate of the error on the numerical value of γ , we tried to deform the RG trajectory by

$$m^2
ightarrow e^{-2gs}m^2$$

where g differs from the analytic result by a given percentage. We tried deformations of

10, 5, 2.5, 1, 0.5

percent: the corresponding fits gave results for the exponent which where compatible with the expected result only for deformations of 0.5%.

イロト イポト イヨト イヨト 三日

Conclusions and outlook

- results are encouraging but lots of work remains to be done
- no proof of continuum limit but good clues that it might work out right (scaling properties of observables)
- many more simulations need to be performed
- many questions need answers: continuum limit, scale invariance...

ヘロア ヘビア ヘビア・

Conclusions and outlook

results are encouraging but lots of work remains to be done

- no proof of continuum limit but good clues that it might work out right (scaling properties of observables)
- many more simulations need to be performed
- many questions need answers: continuum limit, scale invariance...

ヘロン ヘアン ヘビン ヘビン

Conclusions and outlook

- results are encouraging but lots of work remains to be done
- no proof of continuum limit but good clues that it might work out right (scaling properties of observables)
- many more simulations need to be performed
- many questions need answers: continuum limit, scale invariance...

・ロト ・ 理 ト ・ ヨ ト ・

Conclusions and outlook

- results are encouraging but lots of work remains to be done
- no proof of continuum limit but good clues that it might work out right (scaling properties of observables)
- many more simulations need to be performed
- many questions need answers: continuum limit, scale invariance...

・ロト ・ 理 ト ・ ヨ ト ・

Conclusions and outlook

- results are encouraging but lots of work remains to be done
- no proof of continuum limit but good clues that it might work out right (scaling properties of observables)
- many more simulations need to be performed
- many questions need answers: continuum limit, scale invariance...

ヘロト 人間 ト くほ ト くほ トー