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Introduction

Liouville Field Theory in d =2

Introduction and motivations

@ itis a scalar model in d = 2, described by the Euclidean
action:

S— ;2 / x {—;¢(X)D¢(X) + mRe?)

@ the field ¢ and the parameter 5 are dimensionless; mis a
mass

@ at the classical level, one has invariance of the action
under x* — eSx*, ¢ — ¢ — 28
@ while at the quantum mechanical level,
2
xt — eSxt p— ¢ —25- (1 —i—%)
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Introduction

Liouville Field Theory (LFT) arises in string theory in
various situations;

Recent work suggests that LFT might have possible
applications to high energy QCD as an effective theory for
gluon phenomenology (see lancu and McLerran, 2007);

it is a challenge to put LFT on a lattice and perform
numerical simulations;

the issue of a continuum limit is subtle and potentially very
interesting.
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The Lattice Model

To put the theory on the lattice, we start by defining the
Euclidean action

S L6) = 5 3 |- po(00(x) + mPer?)

XER,
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1
S(/Ba m27 La ¢) = ? Z

1

[_2¢(x)m¢(x) T et
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@ [1is the two-dimensional discrete Laplace operator

@ L is the number of lattice sites in each direction

@ lattice units are assumed
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Introduction

The Lattice Model

To put the theory on the lattice, we start by defining the
Euclidean action

1
S(/Ba m27 La ¢) = ? Z

- 300)06) + et
XER,
@ [1is the two-dimensional discrete Laplace operator
@ L is the number of lattice sites in each direction

@ lattice units are assumed

@ periodic boundary conditions are taken for the field
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Introduction

a few more comments:
@ finite volume and finite lattice spacing break scale
invariance explicitely;
@ scale invariance is a subgroup of conformal invariance;
@ the minimum for the classical action is at ¢ — —oc which is
not compatible with Monte Carlo methods: two approaches
are possible
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First approach: constrained field
the field is decomposed

¢(x) = do + x(x)

> x(x)=0
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First approach: constrained field
the field is decomposed

P(X) = ¢o + x(X)
> x(x)=0
which implies
S(8,m?,L.¢) = S(B,me”, L x)

a change in the average field ¢ is equivalent to a change of m.
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First approach: constrained field
the field is decomposed

P(x) = ¢o + x(x)
> x(x)=0
which implies
S(B,mP,L.¢) = S(B,mPe®, L, x)

a change in the average field ¢ is equivalent to a change of m.
The simulation then corresponds to a model in which [dx] only
is integrated in the functional integrals, leaving ¢q free.
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Second approach: point source

Giuseppe Lacagnina Lattice Liouville Field Theory in d = 2



Introduction

Second approach: point source
a current interaction is added to the action with a point source

Scurr = % Z QZ)(X)(S(X - XO)

XER,
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Second approach: point source
a current interaction is added to the action with a point source

Scurr = % Z QZ)(X)(S(X - XO)

XER,

which has a stable minimum configuration (found by numerical
analysis, a € [0, 1])
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Introduction

Second approach: point source
a current interaction is added to the action with a point source

Scurr = % Z QZ)(X)(S(X - XO)

XER,

which has a stable minimum configuration (found by numerical
analysis, a € [0, 1])
In this case the functional integrations are on the whole field

[d].
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Introduction

@ the constrained field method is not used to evaluate
observables but only to investigate the continuum limit;

ea¢(X)
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Introduction

@ the constrained field method is not used to evaluate
observables but only to investigate the continuum limit;

@ both approaches are related to the true Liouville theory by
analytical relations

@ in particular, the second approach can be used to evaluate
n—point functions of operators of the form

ea¢(X)
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Exact results

Some exact results have been obtained:
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Exact results

Some exact results have been obtained:
Partition functions (exact):

Z(3,m? L) = /Dxd% o= S(B.mPe? Ly) _
B /d¢0 Zc(ﬁa m26¢07 L) =

dr2
- /T2 Z(8,72, L)
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Exact results

Results for ¢ (exact):

o\ Ze(B, MR, L, a?5y)
<e >c_ Z,(3, m?, L)

(e70) _Z(/87m27L704ﬂ25X)
(&) = Z(3,L)
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Exact results

Results for ¢ (exact):

o\ Ze(B, MR, L, a?5y)
<e >c_ Z,(3, m?, L)

(e70) _Z(/87m27L704ﬂ25X)
(&) = Z(3,L)

<e‘*¢’> (B, m?, L) =

- /% () =),

Giuseppe Lacagnina Lattice Liouville Field Theory in d = 2



Renormalization Group and Continuum Limit

Approximated results

The following results hold at first order in an m? expansion.
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Renormalization Group and Continuum Limit

Approximated results

The following results hold at first order in an m? expansion.
We need to define the following function:

’
g(L) = —Fz‘rD‘1
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Renormalization Group and Continuum Limit

Approximated results

The following results hold at first order in an m? expansion.
We need to define the following function:

- n() o)

where L, = 0.736089(10)
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Renormalization Group and Continuum Limit

we also calculated the correlation length at first order in m?:

&2(B,m?, L)
L2

o L 62 L 52
_ b Ly & 2,2 ( L\
_#B<%> el () A

where f(L) is finite in the L — oo limit.
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Renormalization Group and Continuum Limit

The following RG transformation
X — e°x

L— e’L
2

—2(1—1—%)3
m — e ) m? = e 25m?
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Renormalization Group and Continuum Limit

The following RG transformation
X — e°x

L— e’L
2

—2(1—1—%)3
m — e ) m? = e 25m?

leaves unchanged
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Renormalization Group and Continuum Limit

The following RG transformation
X — e°x

L— e’L
2

—2(1—1—%)3
m — e ) m? = e 25m?

leaves unchanged

§

ZCa Z7

g
A fixed point is found at
L—oo,m—20

around which we will try to construct a continuum limit for the
unconstrained field theory. The perturbative origin of these
results should be kept in mind.
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Renormalization Group and Continuum Limit

Along an RG trajectory specified by some myq, Lg, the following
result holds

(&), (8, mP, L) = A (L>2(71)

7= 145
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Renormalization Group and Continuum Limit

Continuum Limit

@ we need to verify the scaling properties of 1 and 2 point
functions
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Renormalization Group and Continuum Limit

Continuum Limit

@ we need to verify the scaling properties of 1 and 2 point
functions

@ along the RG trajectories in the L — oo limit
@ that should correspond to a continuum limit.

@ In this limit we need to verify the dependence of 2 point
functions on distance
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Renormalization Group and Continuum Limit

2—point functions

< ea¢<x)ea¢<y)>
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Renormalization Group and Continuum Limit

2—point functions

< ea¢<x)ea¢<y)>

@ behaviour is predicted by conformal invariance; power-law
with the exponent a function of 3
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2—point functions

< ea¢<x)ea¢<y)>

@ behaviour is predicted by conformal invariance; power-law
with the exponent a function of 3

@ previous preliminary results are encouraging...

Giuseppe Lacagnina Lattice Liouville Field Theory in d = 2



Renormalization Group and Continuum Limit

2—point functions

< ea¢<x)ea¢<y)>

@ behaviour is predicted by conformal invariance; power-law
with the exponent a function of 3

@ previous preliminary results are encouraging...
@ need to run more simulations to get final results
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Simulations and results

Simulation details

@ field configurations where generated with a Hybrid Monte
Carlo algorithm
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Simulation details

@ field configurations where generated with a Hybrid Monte
Carlo algorithm

@ simulated volumes from L = 120 to L = 240
@ one configuration in 100 saved to reduce correlations
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Simulations and results

Simulation details

@ field configurations where generated with a Hybrid Monte
Carlo algorithm

@ simulated volumes from L = 120 to L = 240
@ one configuration in 100 saved to reduce correlations
@ about 500 saved configurations per simulation
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Simulations and results

Simulation results for (eX)

B=3,m,=0025, L =240, A=1567(1), B=0717(2)
B,, = B/(4m) [D.7162

T T T T
16}
14}
AL
0
v
12+
— fitto A (LIL)"
10 N
| | | | | |
0,5 0,6 0,7 038 0,9 1
L/L
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Simulations and results

As a first estimate of the error on the numerical value of v, we
tried to deform the RG trajectory by
m? — e 295m?

where g differs from the analytic result by a given percentage.
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Simulations and results

As a first estimate of the error on the numerical value of v, we
tried to deform the RG trajectory by
m? — e 295m?

where g differs from the analytic result by a given percentage.
We tried deformations of

10,5,2.5,1,0.5
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Simulations and results

As a first estimate of the error on the numerical value of v, we
tried to deform the RG trajectory by

m? — e 295m?

where g differs from the analytic result by a given percentage.
We tried deformations of

10,5,2.5,1,0.5

percent: the corresponding fits gave results for the exponent
which where compatible with the expected result only for
deformations of 0.5%.
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@ results are encouraging but lots of work remains to be done
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@ no proof of continuum limit but good clues that it might
work out right (scaling properties of observables)
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Conclusions and outlook

Conclusions and outlook

@ results are encouraging but lots of work remains to be done

@ no proof of continuum limit but good clues that it might
work out right (scaling properties of observables)

@ many more simulations need to be performed

@ many questions need answers: continuum limit, scale
invariance...
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