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Introduction and motivations

it is a scalar model in d = 2, described by the Euclidean
action:

S =
1
β2

∫
d2x

[
−1

2
φ(x)�φ(x) + m2eφ(x)

]

the field φ and the parameter β are dimensionless; m is a
mass
at the classical level, one has invariance of the action
under xµ → esxµ, φ→ φ− 2s
while at the quantum mechanical level,
xµ → esxµ, φ→ φ− 2s · (1 + β2

8π )
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Liouville Field Theory (LFT) arises in string theory in
various situations;
Recent work suggests that LFT might have possible
applications to high energy QCD as an effective theory for
gluon phenomenology (see Iancu and McLerran, 2007);
it is a challenge to put LFT on a lattice and perform
numerical simulations;
the issue of a continuum limit is subtle and potentially very
interesting.
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The Lattice Model

To put the theory on the lattice, we start by defining the
Euclidean action

S(β,m2,L, φ) =
1
β2

∑
x∈RL

[
−1

2
φ(x)�φ(x) + m2eφ(x)

]

� is the two-dimensional discrete Laplace operator
L is the number of lattice sites in each direction
lattice units are assumed
periodic boundary conditions are taken for the field
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a few more comments:
finite volume and finite lattice spacing break scale
invariance explicitely;
scale invariance is a subgroup of conformal invariance;
the minimum for the classical action is at φ→ −∞ which is
not compatible with Monte Carlo methods: two approaches
are possible
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First approach: constrained field
the field is decomposed

φ(x) = φ0 + χ(x)∑
x

χ(x) = 0

which implies

S(β,m2,L, φ) = S(β,m2eφ0 ,L, χ)

a change in the average field φ0 is equivalent to a change of m.
The simulation then corresponds to a model in which [dχ] only
is integrated in the functional integrals, leaving φ0 free.
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Second approach: point source
a current interaction is added to the action with a point source

Scurr =
α

β2

∑
x∈RL

φ(x)δ(x − x0)

which has a stable minimum configuration (found by numerical
analysis, α ∈ [0,1])
In this case the functional integrations are on the whole field
[dφ].
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the constrained field method is not used to evaluate
observables but only to investigate the continuum limit;
both approaches are related to the true Liouville theory by
analytical relations
in particular, the second approach can be used to evaluate
n−point functions of operators of the form

eαφ(x)
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Exact results

Some exact results have been obtained:
Partition functions (exact):

Z (β,m2,L) =

∫
Dχdφ0 e−S(β,m2eφ0 ,L,χ) =

=

∫
dφ0 Zc(β,m2eφ0 ,L) =

=

∫
dτ2

τ2 Zc(β, τ
2,L)
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Results for eαφ (exact):〈
eαφ
〉

c
=

Zc(β,m2,L, αβ2δx)

Zc(β,m2,L)〈
eαφ
〉

=
Z (β,m2,L, αβ2δx)

Z (β,L)

〈
eαφ
〉

(β,m2,L) =

=
1

Z (β,L)

∫
dτ2

τ2

(
τ2

m2

)α
Zc

〈
eαχ(x)

〉
c
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Approximated results

The following results hold at first order in an m2 expansion.
We need to define the following function:

g(L) = − 1
L2 tr�−1

g(L) =
1

2π
ln
(

L
Lc

)
+ O

(
1
L2

)
where Lc = 0.736089(10)
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we also calculated the correlation length at first order in m2:

ξ2(β,m2,L)

L2 =

=
β2

m2L2

(
L
L0

)−β2

4π

1 + m2L2
(

L
L0

)β2

4π

f (L)


where f (L) is finite in the L→∞ limit.
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The following RG transformation

x → esx
L→ esL

m2 → e
−2

„
1+β2

8π

«
s
m2 ≡ e−2γsm2

(1)

leaves unchanged

Zc ,
ξ

L
, β

A fixed point is found at

L→∞,m→ 0

around which we will try to construct a continuum limit for the
unconstrained field theory. The perturbative origin of these
results should be kept in mind.
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Along an RG trajectory specified by some m0,L0, the following
result holds

〈eχ〉c (β,m2,L) = A
(

L
L0

)2(γ−1)

γ = 1 +
β2

8π
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Continuum Limit

we need to verify the scaling properties of 1 and 2 point
functions
along the RG trajectories in the L→∞ limit
that should correspond to a continuum limit.
In this limit we need to verify the dependence of 2 point
functions on distance
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2−point functions

〈
eαφ(x)eαφ(y)

〉
behaviour is predicted by conformal invariance; power-law
with the exponent a function of β
previous preliminary results are encouraging...
need to run more simulations to get final results
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Simulation details

field configurations where generated with a Hybrid Monte
Carlo algorithm
simulated volumes from L = 120 to L = 240
one configuration in 100 saved to reduce correlations
about 500 saved configurations per simulation
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about 500 saved configurations per simulation

Giuseppe Lacagnina Lattice Liouville Field Theory in d = 2



Introduction
Exact results

Renormalization Group and Continuum Limit
Simulations and results

Conclusions and outlook

Simulation results for 〈eχ〉c
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As a first estimate of the error on the numerical value of γ, we
tried to deform the RG trajectory by

m2 → e−2gsm2

where g differs from the analytic result by a given percentage.
We tried deformations of

10,5,2.5,1,0.5

percent: the corresponding fits gave results for the exponent
which where compatible with the expected result only for
deformations of 0.5%.
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Conclusions and outlook

results are encouraging but lots of work remains to be done
no proof of continuum limit but good clues that it might
work out right (scaling properties of observables)
many more simulations need to be performed
many questions need answers: continuum limit, scale
invariance...
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