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Outlook

• Thermo-hydrodynamics for binary fluid mixtures

– The equilibrium free energy
– The macroscopic equations
∗ The Navier-Stokes (NS) equation
∗ The convection-diffusion (CD) equation

• Hybrid lattice Boltzmann model

– The lattice Boltzmann equation (LBE)
– LBE with forcing term for the NS equation
– Continuum limit
– Numerical scheme for the CD equation

• Numerical validation

– Relaxation to equilibrium
– Spurious velocities

• Conclusions and Perspectives



Equilibrium thermodynamics

The equilibrium is described by a free energy

F [n, φ] =

∫

dr

[

nT lnn +
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(∇φ)2

]

n is the total density
T is the temperature (assumed constant)
φ is the concentration difference

• The first term gives the ideal gas pressure pi = nT

• The polynomial terms in φ describe the bulk
properties of an ordered mixture (a < 0, b > 0) with
equilibrium values ±φeq with φeq =

√

−a/b

• The last term (κ > 0) controls the interface
between the two components

The equilibrium profile between the two components is

φ(x) =

√

−a

b
tanh

(

2x

ξ

)

with interface width

ξ = 2
√

−2κ/a



The thermodynamic functions can be obtained from
the free energy:

• The chemical potential difference between the two
components is

µ =
δF
δφ

= aφ + bφ3 − κ∇2φ

• The pressure Pαβ is a tensor since interfaces in the
fluid can exert nonisotropic forces. The diagonal
part p0 read as

p0 = pi +
a

2
φ2 +

3b

4
φ4 − κφ(∇2φ) − κ

2
(∇φ)2

The final form for the pressure tensor is

Pαβ = p0δαβ + κ∂αφ∂βφ

which ensures the equilibrium condition ∂αPαβ = 0



The macroscopic equations

At constant temperature the continuum equations are

• The continuity equation

∂tn + ∂α(nuα) = 0

• The Navier-Stokes (NS) equation (written in 2d)

∂t(nuβ) + ∂α(nuαuβ) = −∂αPαβ+

+∂α [η(∂αuβ + ∂βuα − δαβ∂γuγ) + ζδαβ∂γuγ]

u is the fluid velocity
η and ζ are the shear and bulk viscosities

• The convection-diffusion (CD) equation

∂tφ + ∂α(φuα) = Γ∇2µ

Γ is a mobility coefficient



The lattice Boltzmann equation (LBE)

The distribution functions of the fluid particles fi(r, t),
residing on the link i of the lattice site r at the discrete
time t, are updated according to the rule

fi(r+ei∆t, t+∆t)−fi(r, t)=−∆t

τ
[fi(r, t)−f eq

i (r, t)]

τ is a relaxation parameter
ei are lattice velocity vectors (|ei| = 0, c,

√
2c)

feq
i (r, t) are the equilibrium distribution functions

• The density n and the momentum nu are given by

n =
∑

i

fi nu =
∑

i

fiei

• feq
i are chosen to conserve locally density and

momentum and are given by a second order
expansion in the fluid velocity u of the Maxwell-
Boltzmann distribution

In a previous model based on a free energy (Yeomans
model) the second moment of f eq

i was modified to
describe binary fluid mixtures



The time evolution occurs in two steps

• Collision

f c
i (r, t) = fi(r, t) −

∆t

τ
[fi(r, t)−f eq

i (r, t)]

• Propagation

fi(r+ei∆t, t+∆t) = f c
i (r, t)



The LBE with the forcing term

The evolution equation becomes

fi(r + ei∆t, t + ∆t) − fi(r, t) = −∆t

τ
[fi − feq

i ] + ∆tFi

• The forcing term Fi depends on the force density
F acting on the fluid

• Fi can be expressed as a power series at the second
order in the lattice velocity and is determined by
requiring that its moments are consistent with the
hydrodynamic equations

• The fluid momentum is redefined as

nu
∗ =

∑

i

fiei +
1

2
F∆t,

This corresponds to an average between the pre-
and post-collisional values

• feq
i are NOT modified with respect to the standard

LBE except for the formal substitution u → u
∗



The continuum limit

By using a Chapman-Enskog expansion the continuity
equation and the following NS equation are obtained

∂t(nu∗

β) + ∂α(nu∗

αu∗

β) = −∂β(nc2

s) + Fβ+

+∂α[η(∂αu∗

β + ∂βu∗

α)]

cs = c/
√

3 is the sound speed of the model

• In the present model it is ζ = η

• The viscosity is

η = nc2

s∆t(
τ

∆t
− 1

2
)

• To recover the correct NS equation it has to be

F = −φ∇µ = −φ∇
[

aφ + bφ3 − κ∇2φ
]

where φ comes from the solution of the CD equation

How to compute these derivatives?



Numerical calculation of the forcing term

We use finite-difference schemes defined over 9 lattice
sites for the first derivative and the Laplacian

∂Dx =
1

∆x
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−N 0 N
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1
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R Q R
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R Q R





with 2N + 4M = 1 and Q + 2R = 1 to guarantee
consistency between the continuous and discrete
operators

The standard central difference schemes correspond to

the choices N =
1

2
,M = 0 and Q = 1, R = 0

The free parameters N and Q are chosen to
minimize the spurious velocities



Numerical scheme for the CD equation

• φ is defined on the nodes of the LBE lattice

• A standard finite-difference scheme on nearest
neighbors for spatial differential operators is adopted

• Time is discretized in steps ∆t
′

with ∆t = m∆t
′

and m integer

• φ is updated from time t to t+∆t
′

in two successive
partial steps to have a better numerical stability
using an explicit first order Euler scheme

– First we implement the advection term where
the velocity u

∗ comes from the solution of the
LBE

– Then the diffusive part is integrated



Numerical validation

Results were obtained with ∆x = ∆t = ∆t
′

= 1

Relaxation of a planar interface of width ∼ 5∆x with
standard finite differences for the force term in LBE

The full line is the analytical solution

Data points are the simulation results



Equilibration of a droplet on a 128 × 128 lattice

Velocities in the standard case for the force term

Velocities with the optimal choice for the force term



Spurious velocities

Yeomans model
Our model with the standard choice N = 1/2, Q = 1
Our model with the optimal choice N = 0.3, Q = 2.5

The optimal parameters are valid over the range
0.6 < τ/∆t < 100



Conclusions and Perspectives

• The present model takes into account
thermodynamics via a forcing term in the LBE

• The correct NS equation is recovered

• Spurious velocities can be reduced using a 9-point
stencil for the space derivatives

• The CD equation can be integrated on the same
space and time scales of the LBE

• Application to complex fluids

• Extension to thermal binary fluids


