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Introduction

QCD with non-zero baryon density

@ Continuum: L = Lacp + pdo, Jp =Py, [ dxJo = Ng — Ny
Z(u) =Tr (ef(HQCD*MN)/T)
@ Lattice: p as the temporal component of a U(1) imaginary
background field

Us(n) — ¥ Us(n) . Uj(n) — e~ Uj(n)
[F. Karsch, P. Hasenfratz, 1983]

[ DU DYDYy O[U, , ] e SelU-v-91-SelU]
- [ DU Dy Dy e=S¢1U-.91-SelU]

SF = ZE(”)Mnmluv plp(m) — /DﬂDL/J e~ SFlU¥.¥] — et M[U, ]

n,m

(0)
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The “sign” problem

o) JDUO)se D | [DYDY OU, ¢, y] e V0]
(O)= [ DU e=SerlU] » (Osr = [ DY Dy e=SelU¥]
Ser[U] = Sg[U] — Indet M[U]

@ In order to perform Monte Carlo simulations “det M” must be real

° for 1 = 0 in SU(3), since M = PMP~", with P = ~s for Wilson,
P = I for staggered fermions

A. Papa Analytic continuation from an imaginary chemical potential



QCD phase diagram
Q

Introduction .
ero baryon density

Ways out

The “sign” problem

_ [ DU(O)g e Sl _ [ D¥Dy O[U, 4, 9] e~ SFlUv. 7]

0= DU e=SalU] \Obsr [ DDy e=SlU:.7]

Ser[U] = S[U] — Indet M[U]

@ In order to perform Monte Carlo simulations “det M” must be real

° for 1 = 0 in SU(3), since M = PMP~", with P = ~s for Wilson,
P = I for staggered fermions

o NO for yu # 0in SU(3), since M' (1) = M(—p)
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_ [ DU(O)g e Sl _ [ D¥Dy O[U, 4, 9] e~ SFlUv. 7]

0= DU e=SalU] \Obsr [ DDy e=SlU:.7]

Ser[U] = S[U] — Indet M[U]

@ In order to perform Monte Carlo simulations “det M” must be real

° for 1 = 0 in SU(3), since M = PMP~", with P = ~s for Wilson,
P = I for staggered fermions

o NO for yu # 0in SU(3), since M' (1) = M(—p)

° for finite isospin density; e.g., for Ny = 2,
(M()M(—p))t = M(u)M(—p)
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The “sign” problem

_ [ DU(O)g e Sl _ [ D¥Dy O[U, 4, 9] e~ SFlUv. 7]

0= DU e=SalU] \Obsr [ DDy e=SlU:.7]

Ser[U] = S[U] — Indet M[U]

@ In order to perform Monte Carlo simulations “det M” must be real

° for 1 = 0 in SU(3), since M = PMP~", with P = ~s for Wilson,
P = I for staggered fermions

o NO for yu # 0in SU(3), since M' (1) = M(—p)

° for finite isospin density; e.g., for Ny = 2,
(M()M(—p))t = M(u)M(—p)
° for u # 0 in SU(2), owing to M* = oM
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The “sign” problem

_ [ DU(O)g e Sl _ [ D¥Dy O[U, 4, 9] e~ SFlUv. 7]

0= DU e=SalU] \Obsr [ DDy e=SlU:.7]

Ser[U] = S[U] — Indet M[U]

@ In order to perform Monte Carlo simulations “det M” must be real

° for 1 = 0 in SU(3), since M = PMP~", with P = ~s for Wilson,
P = I for staggered fermions

e NO for i # 0 in SU(3), since MT(u) = M(—p)

° for finite isospin density; e.g., for Ny = 2,
(M(L)M(=))" = M(p)M(—p)

° for u # 0in SU(2), owing to M* = oM

° for i = iy in SU(Ne), being MT (i) = M(ip)
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Ways out

Ways’ out |

@ to perform simulations at =0 and to take advantage of physical
fluctuations in the thermal ensemble for extracting information at
(small) non-zero p, after reweighting

/) det(M()) det(M(,2)
(Ohuro = <Odet(M(0)) >M_o / <det(M<0)) >H_o
[I.M. Barbour et al., 1998]

Multiparameter reweighting: reweighting also in 3
[Z. Fodor, S.D. Katz, 2002 —]
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Ways’ out |

@ to perform simulations at =0 and to take advantage of physical
fluctuations in the thermal ensemble for extracting information at
(small) non-zero p, after reweighting

/) det(M()) det(M(,2)
(Ohuro = <Odet(M(0)) >M_o / <det(M<0)) >H_o
[I.M. Barbour et al., 1998]

Multiparameter reweighting: reweighting also in 3
[Z. Fodor, S.D. Katz, 2002 —]

@ to Taylor expand in u the v.e.v. of interest and to calculate the
coefficients of the expansion by numerical simulations at . =0
[S.A. Gottlieb, 1988] [QCD-TARO coll., 2001]
[C.R. Allton et al., 2002-2003-2005]
[R.V. Gavai, S. Gupta, 2003-2005] [S. Ejiri et al., 2006]
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Ways’ out Il

@ to reorder the path integral representation of the partition
function, by first calculating expectation values with constrained
parameters and then weighting over the density of states

[G. Bhanot et al., 1987] [M. Karliner et al., 1988]

[A. Gocksch, 1988] [V. Azcoiti, G. Di Carlo, A.F. Grillo, 1990]
[X.-Q. Luo, 2001] [J. Ambjorn et al., 2002]

[Z. Fodor, S.D. Katz, C. Schmidt, 2005-2007]
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Ways out

Ways’ out Il

@ to reorder the path integral representation of the partition
function, by first calculating expectation values with constrained
parameters and then weighting over the density of states

[G. Bhanot et al., 1987] [M. Karliner et al., 1988]

[A. Gocksch, 1988] [V. Azcoiti, G. Di Carlo, A.F. Grillo, 1990]
[X.-Q. Luo, 2001] [J. Ambjorn et al., 2002]

[Z. Fodor, S.D. Katz, C. Schmidt, 2005-2007]

@ to consider the theory at imaginary chemical potential
Us(n) — e¥1Ug(n) ,  Uj(n) — e™1Uj(n) = (e U4(n))

for which det M[U] is real and Monte Carlo simulations are
feasible; this opens the way to two approaches...
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Ways’ out Il

@ to build the canonical partition function Z(n) by Fourier transform
of the grand canonical function at imaginary chemical potential:

Z(n) Tr (e_HQCD/T§(N — n)) =Tr (e_HQCD/T/ ge i0(N— n))
0 ™

— zl en da e*lon (HQCDfleTN)/T
Y3
1 271'

= o, doe "z =ifT)
Y

[A. Hasenfratz, D. Toussaint, 1992]

[M.G. Alford, A. Kapustin, F. Wilczek, 1999]

[P. de Forcrand, S. Kratochvila, 2004-2005-2006]
[A. Alexandru et al., 2005]
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baryon density

Ways out

Ways’ out IV

@ Method of analytic continuation: to perform numerical
simulations at imaginary chemical potential and to analytically
continue the results to real u

[M.P. Lombardo, 2000] [A. Hart, M. Laine, O. Philipsen, 2001]

[Ph. de Forcrand, O. Philipsen, 2002-2003-2004]

[M. D’Elia, M.P. Lombardo, 2002-2003-2004]

[P. Giudice, A.P., 2004] [V. Azcoiti et al., 2004-2005]

[H.-S. Chen, X.-Q. Luo, 2005] [S. Kim et al., 2005]

[M.P. Lombardo, 2005] [M. D’Elia, F. Di Renzo, M.P. Lombardo, 2005]
[P. Cea, L. Cosmai, M. D’Elia, A.P., 2006 —]

[F. Karbstein, M. Thies, 2006]

[L.-K. Wu, X.-Q. Luo, H.-S. Chen, 2007]
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Ways’ out V

— extent of the attainable domain with real p is limited
@ by the periodicity and non-analyticities for imaginary u
@ by the accuracy of the interpolation of data for imaginary p
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Ways’ out V

— extent of the attainable domain with real p is limited
@ by the periodicity and non-analyticities for imaginary u
@ by the accuracy of the interpolation of data for imaginary p

All the mentioned methods have roughly the same range of
applicability (/T <1), although with different systematics, and agree
inside this range
[O. Philipsen, Lattice 2005]
[C. Schmidt, Lattice 2006]
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QCD with imaginary chemical potential

@ SU(N;) gauge theory with imaginary

, iR 1
v, ZO)=Tr[e N g gy, g -
e Free quarks (N =0,1,2,...) — Z(6) periodic with 27
e Color singlets (N multiple of N;) — Z(0) periodic with 27 /N
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@ SU(N;) gauge theory with imaginary

, iR 1
v, ZO)=Tr[e N g gy, g -
e Free quarks (N =0,1,2,...) — Z(6) periodic with 27
e Color singlets (N multiple of N;) — Z(0) periodic with 27 /N

@ [A. Roberge, N. Weiss, 1986] have shown that
e Z(6) is always periodic with 27 /N,
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The method of analytic continuation

QCD with imaginary chemical potential

@ SU(N;) gauge theory with imaginary

1 — v, Z(6) =Tr [efﬂHHeN} L 0=pv, B= 1

T
e Free quarks (N =0,1,2,...) — Z(6) periodic with 27
e Color singlets (N multiple of N;) — Z(0) periodic with 27 /N

@ [A. Roberge, N. Weiss, 1986] have shown that
e Z(6) is always periodic with 27 /N,
e F(0)=-InZ(0)/8
T < Tg: regular function of 6 (tool: hopping parameter expansion)
T > Tg: discontinuous function in 6 = 2w (k + 1/2)/Nc (tool:
perturbative evaluation of the effective potential for the Wilson line)
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QCD with imaginary chemical potential

@ SU(N;) gauge theory with imaginary

1 — v, Z(6) =Tr [efﬂHHé)N} L 0=pv, B= 1

T
e Free quarks (N =0,1,2,...) — Z(6) periodic with 27
e Color singlets (N multiple of N;) — Z(0) periodic with 27 /N

@ [A. Roberge, N. Weiss, 1986] have shown that
e Z(6) is always periodic with 27 /N,
e F(0)=-InZ(0)/8
T < Tg: regular function of 6 (tool: hopping parameter expansion)
T > Tg: discontinuous function in 6 = 2w (k + 1/2)/Nc (tool:
perturbative evaluation of the effective potential for the Wilson line)

@ This scenario has been confirmed in numerical simulations in
SU(3) [Ph. de Forcrand, O. Philipsen, 2002; M. D’Elia, M.P. Lombardo,
2003] and in SU(2) [P. Giudice, A.P., 2004]
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Numerical test
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QCD with imaginary chemical potential
cription of the method

The method of analytic continuation
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Numerical test
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Description of the method

@ Strategy of the method of analytic continuation

e determine (O) for a set of value of imaginary chemical potential,
=
e interpolate (O)(y) with a polynomial:
(0)(n) = a0 + app” + asp’ + ap® + O(1°)
e analytically continue to i = g by the replacement p2 — —p2
(0) (1) = ao—app® + aup® ~asp® + O(1°)

@ Applied in
e SU(3), ny _2[Ph de Forcrand, O. Philipsen, 2002]
e SU(3), ny = 2 (Wilson) [L.-K. Wu, X.-Q. Luo, H.-S. Chen, 2007]
e SU(3), ny = 3 [Ph. de Forcrand, O. Philipsen, 2003]
e SU(3), n, =4
[M. D’Elia, M.P. Lombardo, 2003; V. Azcoiti et al., 2004-2005]
e SU(3), ns = 4 (Wilson) [H.-S. Chen, X.-Q. Luo, 2005]
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Description of the method

@ Tested in
@ strong-coupling QCD [M.P. Lombardo, 2000]
e 3d SU(3) + adjoint Higgs model
[A. Hart, M. Laine, O. Philipsen, 2001]
e SU@2),n =8
[P. Giudice, A.P,, 2004; P. Cea, L. Cosmai, M. D’Elia, A.P., 2006]
e 3d 3-state Potts model [S. Kim et al., 2005]
o 2d Gross-Neveu at large N [F. Karbstein, M. Thies, 2006]

@ In most cases a polynomial has been used as interpolating
function, sometimes a Fourier sum for the low-temperature
regime [M. D’Elia, M.P. Lombardo, 2002];

@ A careful numerical analysis in SU(2) has shown that a
considerable improvement can be achieved at high temperatures
if ratio of polynomials [M.P. Lombardo, Lattice 2005] are used
instead [P. Cea, L. Cosmai, M. D’Elia, A.P., 2006; A.P., SM&FT 2006]
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Analytic continuation of the critical line

B

fif
s 0 37 ¢
NN, = HEW NN,

fir

@ The method of analytic continuation is extensively applied to the
critical line itself.
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Strategy

@ locate the (pseudo-)critical 3’s for several fixed values of the
imaginary chemical potential, by looking for peaks in the
susceptibilities of a given observable

@ interpolate the critical 5’s obtained at imaginary chemical
potential with an analytic function of u, to be then extrapolated to
real chemical potential

@ if the theory is free from the sign problem, compare the
extrapolated curve with the determinations of the critical 5’s at
real chemical potential.

Observables: chiral condensate, Polyakov loop, plaquette.
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Numerical test

Numerical test

The test is performed in two theories free from the sign problem:

@ SU(2) with n;=8 staggered fermions

o 16° x 4 lattice, fermion mass am=0.07 and am=0.2
e 16° x 6 lattice, fermion mass am=0.07

@ SU(3) with finite isospin density, n=8 staggered fermions, 8% x 4
lattice, fermion mass am=0.1

Technical details:

@ hybrid Monte Carlo algorithm, with dt=0.01
(exact ¢ algorithm [S.A. Gottlieb et al., 1987]).

@ statistics 10k +— 20k

@ simulations performed mostly on the computer facilities at the
INFN APEnext Computing Center

A. Papa Analytic continuation from an imaginary chemical potential



15

y chemical potential

A. Papa

Analytic continuation from an imaginary chemical potential

T T
(ap)’= - 0.1225 i (aw)’=0.0625 |
2 1+ - 2 1 -
= = [}
g Ere
3 3
3 o s |
£ o5k 4 £ os|- ° 4
R [
-]
9.45 l‘.S 1.‘55 1‘.6 q.Z 1‘.3 l‘.4 15
B B
0o chiral cond. Polyakov loop  plaquette
035/ 1.5440(16)  1.5349(43) 1.5418(24)
0.30/ 1.5068(15) 1.5019(29) 1.5046(21)
025/ 1.4775(29)  1.4665(32) 1.4755(37)
0.20/ 1.4532(16)  1.4453(36) 1.4522(26)
0.15/ 1.4324(22)  1.4240(28) 1.4300(39)
0.10/ 1.4197(16)  1.41 04(33) 1.4199(26)
0. 1.4102(18) 1.3989(61) 1.4117(32)
020  1.3528(22)  1.3388(72) 1.3631(46)
0.25  1.3145(30)  1.2976(62) 1.3286(50)
0.30  1.2433(59)  1.2508(62) 1.2864(109)




Q chemical potential
The method of analytic continuation Dy { method
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umerical test

SU(2), 162 x 4, am=0.07: plaquette
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QC h imaginary chemical potential
The method of analytic continuation Dy { e method
Numerical test
SU(2), 162 x 4, am=0.07: Poyakov loop
16
i from the Polyakov loop i
15 |- AB@)’, b=
B 14 -
13 —
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QC h imaginary chemical potential
The method of analytic continuation Dy { e method
Numerical test
SU(2), 162 x 4, am=0.07: chiral condensate
16 }
I i from the chiral condensate |
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B 14 -
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Q chemical potential
The method of analytic continuation Description of the method
N

umerical test

), 16° x 4, am=0.07: summary

@ no room for fitting functions different from A + Bji?
@ [urit(fimw) in agreement with direct determinations

@ deviation between extrapolation and direct determinations at real
chemical potential
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QCD with imaginary chemical potential
The method of analytic continuation Description o method
Numerical test

SU(2), 162 x 4, am=0.07: summary

@ no room for fitting functions different from A + Bji?
@ [urit(fimw) in agreement with direct determinations

@ deviation between extrapolation and direct determinations at real
chemical potential

— global fit
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The method of analytic continuation Dy { e method
N

umerical test

SU(2), 162 x 4, am=0.07: chiral condensate
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| 3 from the chiral condensate |
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2] chiral cond.  Polyakov loop

0.35/ 1.7713(30) 1.7709(30)

0.30/ 1.7463(74)  1.7362(88)

0.207  1.6994(44) 1.6928(59)

0.10i 1.6771(43) 1.6680(86)

0. 1.6649(36) 1.6649(88)

0.20 1.6430(54) 1.6105(48)

0.30 1.5989(45) 1.5606(70)
18- from the Polyakov loop 18
L —— A+B(ap)’, Hina=01 4 L
17+ 17+
B. | B |
16 161
15 15+
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The method of analytic continuation Dy { e method
N

umerical test

SU(2), 162 x 4, am=0.2 (preliminary)

1.8 from the chiral condensateT

| | global fit (quartic)l |

1.7 ]

Be | l
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15 ]
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The method of analytic continuation Dy
N

umerical test

SU(2), 163 x 6, am=0.07 (preliminary)

I chiral cond.

0.24 1.6349(208)

0.20 1.6136(41)

0.15 1.6018(28) Data are u? > 0 are taken from

0. 1.582(2) [S. Conradi, A. D’Alessandro, M. D’Elia, 2006]
0.15 1.568(2)

0.215(10) 155
0.342(10) 15

E from the chiral oondensle: E from the chiral condensle:
wof e i | Lo 1
B B
15f 150
Lo v v v b v v v v 1l b v v v b v v v v 10l
14 0 01 14
2 2
(an) (an)
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The method of analytic continuation Dy
N

umerical test

SU(3) isospin, 8% x 4, am=0.1 (preliminary)

T T
Polyakov loop distribution, au=0.40 L C‘hiral condensate dis(ribul‘ion, au=0.40

20 —

— B=45950| 1 — B=4.5900
15 — B=45925| | — B=45925|
— B=4590 — B=4.5950] |
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@ We have tested the analytic continuation of the critical line in the
(T, p)-plane from imaginary to real chemical potential in 2-color
QCD and, preliminarly, in SU(3) with finite isospin density.
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@ However, when trying to infer the behavior of the critical line at
real . from the extrapolation of its behavior at imaginary p, a very
large precision is needed to get the correct result.
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large precision is needed to get the correct result.

@ In the case of polynomial interpolations, there is a clear
indication that terms of order 1* or even 18 play a relevant role at
u? > 0, but are less visible at 2 < 0, this calling for an accurate
knowledge of the critical line in all the first RW sector.
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@ We have tested the analytic continuation of the critical line in the
(T, p)-plane from imaginary to real chemical potential in 2-color
QCD and, preliminarly, in SU(3) with finite isospin density.

@ We have found that the critical line around i = 0 can be
described by an analytic function.

@ However, when trying to infer the behavior of the critical line at
real . from the extrapolation of its behavior at imaginary p, a very
large precision is needed to get the correct result.

@ In the case of polynomial interpolations, there is a clear
indication that terms of order 1* or even 18 play a relevant role at
u? > 0, but are less visible at 2 < 0, this calling for an accurate
knowledge of the critical line in all the first RW sector.

@ We have preliminary indications that in 2-color QCD this effect is
strongly dependent on the fermionic mass and is more
pronounced toward the chiral limit; in SU(3) with finite isospin
density it seems to be less severe, but further investigations are
needed.

A. Papa Analytic continuation from an imaginary chemical potential



Conclusions

Roberge-Weiss’ proof |

Z(9):/ DDy DA, exp {—/ a*x [w(yn —myy — %/ﬂ _ ,-wa} }

time interval running fromr=0to 7 =33
periodic b.c. for A, anti-periodic b.c. for ¢

@ change of variables |
¥(x,7) — exp(itd/3) ¥(x,T)
2(6) = [ DoDi DA, exp{ - [ o [i2D - mu - ;F| |

with Z[}(Xa 6) = - eXp(’9)1/’(X7 0)
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Roberge-Weiss’ proof Il

@ change of variables
Y —Up, A— UAU~" — é(aU)U—1

U(x,7) € SU(N¢), U(x, ) =exp(2rik/N;) U(x,0), k integer
i.e. U periodic up to an element of Z(N)

/DtzpDAM exp{ /d4 [ (yD — m)¢—1F2”

with ¥(x, 8) = — exp(2mik /N;) exp(if)y(x, 0)

ie. Z(0) = Z(6 + 27k/Ny)

A. Papa Analytic continuation from an imaginary chemical potential



Conclusions

Roberge-Weiss’ proof Il|

@ V.e.v’s of observables which are not modified by the above
changes of variables (e.g. chiral condensate, fermionic number
density) have the same periodicity of the partition function, 27 /N,

@ The v.e.v. of the Polyakov loop is 27/ N, periodic up to an
element of Z(N):

(D)o+2rnk/n, = exp(2mik/Nc){L)g

k=0,1,...,N; -1

so, in fact, the periodicity is 27
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