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The forced-damped FPU lattice

Equations of motion

ün = un+1 + un−1 − 2un + (un+1 − un)3 + (un−1 − un)3

−γu̇n + f cos(ωt − πn)

un, displacement of the n-th oscillator with respect to its equilibrium position

f forcing strength at variable driving frequency ω acting on the shortest wavelength (π
mode)

γ damping acting on all the modes

For vanishing damping and forcing:γ = f = 0 (Hamiltonian lattice limit), the π-mode is
modulationally unstable above a critical energy density ǫc = Ec/N ≈ π2/(3N2).

Its destabilization leads to the formation of a chaotic breather.
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Mode-coupling

Creation-annihilation operators representation

un =
1

2

X

k

h

ak ei(ωt+kn) + a+
−k

e−i(ωt−kn)
i

,

Weak damping limit γ ≪ ω and neglecting äk

−2iωȧk − iωγak =

= (ω2
k − ω2)ak + δk,πf + 6

X

q1,q2

Gk
q1,q2

aq1aq2a+
q1+q2−k

,

with Gk
q1,q2

some calculable mode-coupling coefficients and ω2
k

= 2(1 − cos k).
All our results are based on these equations and consist in

studying the dynamics of the complex amplitude aπ of the π-mode, when all the
energy is put in the π-mode

computing the critical forcing threshold fc above which the π-mode is “modulationally"
unstable and begins to exchange energy with other modes

deriving the approximate analytical expression of the modulated standing wave arising
at frequencies ω inside the “phonon band" ω < ω∗ ≈ 2 +

√
3γ/2
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π-mode dynamics

When the π-mode is stable, the dynamics of the complex amplitude aπ is given by

−2iωȧπ − iωγaπ = (4 − ω2)aπ + f + 12aπ|aπ|2

Stationary solutions (ȧπ = 0) solving

aπ =
f

ω2 − 4 − 12|aπ|2 − iγω
,

both for the amplitude and for the phase of aπ .
-ω < ω∗ (in-band), only one real root
-ω > ω∗ (out-band), three roots in [f+, f−]
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Critical forcing

Linearizing around the π-mode solution

−2iωȧk − iωγak = (ω̃2
k − ω2)ak + 3ω2

ka2
π a+

−k
,

where ω̃2
k

= (1 + 6|aπ|2)ω2
k

.
-Look for solutions of the form exp(νkt).
-For ω < ω∗ (in-band), full analytical solution

fc =

v

u

u

t

γ

3(ω − 2γ)

(

»

ω2 − 4(ω − γ)

ω − 2γ

–2

+ γ2ω2

)

critical forcing

|aπ|2c = γ/(3(ω − 2γ)) critical amplitude

cos kM = 1 − ω2/(2(1 + 6|aπ|2c)) fastest growing mode

-For ω > ω∗ (out-band) a new type of instability appears, which destabilized the lower
branch A at f int

cr before f reaches the end point f−.
Numerical determination of f int

cr
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Stability chart

Control parameter plane (ω, f) for γ = 0.1.
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The dashed line for ω < ω∗ is the critical forcing fcr at which "modulational instability"
occurs. The region for ω > ω∗, where three solutions exist, is bounded by the solid lines f±.
The dotted line within corresponds to the instability threshold f int

cr (evaluated numerically
from the internal dynamics of the π-mode). The full triangles are the numerical estimates of
fcr for the full system. Open circles left (resp. right) of the ω = ω∗ line denote points where
standing waves (resp. breathers) occur. The stars are some parameter values for which
space-time chaotic patterns have been detected.
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In-band nonlinear wave

For ω < ω∗, stationary subdynamics in (kM , π) −→ Standing modulated waves.

un = |aπ|(−1)n cos(ωt + θπ) + 2|akM
| cos(kMn) cos(ωt + θkM

)

Infinite numbers of harmonics kn = kMn + (n − 1)π, n = 1, . . . (at variance with forced
Klein-Gordon lattices).
(ω = 1.8, f = 0.150 and γ = 0.1)

|aπ|2 = 0.02085 |akM
|2 = 4.88 10−4 (numerical)

|aπ|2 = 0.02085 |akM
|2 = 4.27 10−4 (theoretical)

Energy density hn along the chain and spectrum of mode energies ǫk .
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Out-band multibreather

For ω > ω∗ modulational instability leads to the formation of a stable unevenly spaced
distribution of breathers, a sort of multibreather. In the figure below, ω = 2.4, f = 0.225.
The displacement pattern shows an in-phase breather over an anti-phase π-mode
background.
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Forcing the p < π mode

Equations of motion

ün = un+1 + un−1 − 2un + (un+1 − un)3 + (un−1 − un)3

−γu̇n + f cos(ωt − pn)

Now π/2 < |p| < π.

For ω < ω∗ ≈ ωp +
√

3/(2γ) (in-band), p-mode destabilization leads to the formation
of a travelling modulated wave, well described by a triplet of modes k∗, p, 2p − k∗.

For ω > ω∗, the destabilization leads to a travelling multibreather, which, in the
low-amplitude limit, can be described by appropriate solutions of a driven-damped
nonlinear Schrödinger equation.
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Travelling multibreather

Travelling multibreather pattern generated after the modulational instability of the p-mode for
a lattice of N = 512 sites. Here, ω = 2.05, f = 0.075, p = 2.4542.

Driven FPU f=0.075 omega=2.05 gamma=0.1 k=2.4542
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Spatial spectrum of the travelling multibreather. ǫk = |U̇k| + ω2|Uk|, where Uk is the k-th
component of the Fourier spectrum of the displacement field un.
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Sharp pulse

FPU

ün = un+1 + un−1 − 2un + (un+1 − un)3 + (un−1 − un)3,

u1 = A0 · sin
h

ω0(t0 − t)
i

if 0 < t ≤ t0 and

u1 = 0 if t > t0,

The right end uN is pinned,vn = un+1 − un (relative displacement)
A0 = 11, ω0 =

√
2, t0 = 1, N = 200

0 50 100 150 200
−2

0

2

4

6

8

10

12

Lattice Sites  [n]

D
is

p
la

c
e

m
e

n
ts

  
u

n

t=20 

a) 

0 50 100 150 200
−8

−6

−4

−2

0

2

4

Lattice Sites  [n]

v
n
=

u
n
−

u
n

−
1

t=20 

b) 

Nonlinear transport phenomena in low-dimensional lattices – p.13/27



Approximate solution

Truncated magic wavenumber 2π
3

nonlinear travelling wave

vn = ±A

2
[1 + cos(

2π

3
n − ωt )] if − π <

2π

3
n − ωt < π

Frequency ω and velocity V in rotating wave approximation

ω =
q

3 + (45/16)A2; V = ω/(2π/3) = 3
q

3 + (45/16)A2/(2π).
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Exponential tails

Kinks have a localized bulk sided by exponential tails. The decay length Λ is a function of
velocity. This dependence can be derived analytically representing the relative
displacements in the tails as

vn ∼ exp [±(n − V t)/Λ].

In the limit n − V t ≫ Λ, one gets

V 2 = 4Λ2 sinh2(1/2Λ)

The decay length Λ is real positive only for supersonic excitations with V > 1 and it diverges
for V = 1.
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Mechanically excited FPU chain

FPU bulk equations

ün = un+1 + un−1 − 2un + (un+1 − un)3 + (un−1 − un)3

Left border driving u0(t) = A cos ωt
Righ border damping Damping is applied to ND rightmost
sites (typically 10% of the total) by adding a viscous term
−γu̇n to their equation of motion.
Average energy flux j =

∑

n
jn/N

jn =
1

2
(u̇n + u̇n+1)

[

un+1 − un + (un+1 − un)3
]
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Stationary state
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The local flux is computed for ω = 3.5, A = 1.27, γ = 5.
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Supratransmission

In the quasi-harmonic approximation

j =
1

2
v(k, A) ω2A2 ,

where v(k, A) and ω are the group velocity and the frequency of nonlinear phonons,
respectively.
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Boundary breather excitation
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the supratransmission threshold Ath = 2.05.
Above the threshold a repeated excitation of breathers from
the boundary occurs.
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Transition and hysteresis
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Stochastic forcing

ün = un+1 + un−1 − 2un + (un+1 − un)3

+(un−1 − un)3 − γu̇n + ξn(t),

Gaussian space uncorrelated white noise

〈ξm(t)ξn(0)〉 = 2Dδ(t)δmn

Boundary conditions

u0(t) = A cos(Wt) cos(Ωt) uN (t) = uN+1(t),

A is time modulated with frequency W ≪ Ω ∼ 2
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Solutions without damping and noise
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Forcing energy levels with noise

W = 0, no modulation
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Multiple resonance-I
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Multiple resonance-II
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Applications to optical systems
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Reviews on FPU
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