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Preliminaries

Lattice simulations of Yang-Mills theories with gauge group SU(N) at finite
temperature

The Lagrangian is characterized by exact center symmetry

The Polyakov loop L = tr
∏NT

t=1 U4(t); order parameter for deconfinement

The free energy associated with the bare Polyakov loop is divergent in the
continuum: renormalization required [Dotsenko and Vergeles, 1980]
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Why large N?

At fixed λ = g2N and Nf , expansions in powers of 1/N give non-trivial insight onto
some non-perturbative features of QCD [’t Hooft, 1974; Witten, 1979; Manohar,
1998]

QCD SU(N)

Feynmann diagrams; Planar diagram dominance
Formal connection to closed string theory; Topological expansions of amplitude↔
Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri
and Oz, 1999]
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Polyakov loop renormalization methods

1 Using the QQ̄ potential at zero temperature [Kaczmarek, Karsch, Petreczky and
Zantow, 2002; Hübner and Pica, 2008]

Lren = Z Nt Lbare, Z = exp(V0a/2)

2 At fixed temperature T , remove the Nt -dependent contributions to the bare
Polyakov loop free energy [Dumitru et al., 2003]:

F bare = Nt F div + F ren + N−1
t F lat + . . .

(however, note that g0 is not fixed . . . )

3 Iterative determination of the renormalization term, from simulations at two
different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]

4 Fixed scale renormalization [Gavai, 2010]
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Simulation

Simulations with the Wilson action [Wilson, 1974]:

S =
2N
g2

0

∑
x

∑
µ<ν

{
1−

1
N

Re trU1,1
µ,ν(x)

}

. . . and with the tree-level improved action [Curci, Menotti and Paffuti, 1983;
Lüscher and Weisz, 1985]:

S =
2N
g2

0

∑
x

∑
µ<ν

{
1−

1
N

Re tr
[

5
3

U1,1
µ,ν(x)−

1
12

U1,2
µ,ν(x)−

1
12

U1,2
ν,µ(x)

]}

Simulation algorithm based on a (standard) 1 + 3 combination of
heat-bath [Creutz, 1980; Kennedy and Pendleton, 1985] and
overrelaxation [Adler, 1981; Brown and Woch, 1987] updates on SU(2)
subgroups [Cabibbo and Marinari, 1982]
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Setting the scale

For the Wilson action: high-precision determinations available in the
literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and
Wenger, 2004]
For the tree-level improved action: static potential at T = 0 from Wilson loops
W (r , L):

V (r) = lim
L→∞

ln
W (r , L− a)

W (r , L)
, W (r , L) = e−L·V (r) + . . .

Iteratively smeared spacelike links:

U(i+1)
µ (x) = U ∈ SU(N) which maximizes Re tr(U†W )

with:

W = (1− k)U(i)
µ (x) +

k
4

∑
U(i)

staple

Fits to the Cornell potential to extract the string tension:

V (r) = σr + V0 +
γ

r

Comparison with a scale setting from the determination of the critical
temperature [Caselle, Panero and Piemonte, 2011]
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Irreducible representations

For SU(2), the recursive formula for obtaining characters of any irreducible
representation:

trn+1g = trng tr1g − trn−1g with: tr0g = 1

For SU(3), the characters of higher representations are obtained using the Young
calculus and the relation between the traces in the fundamental and
anti-fundamental irreducible representation:

1
2

[(trf g)2 − trf (g2)] = tr f̄ g = (trf g)?

For SU(N > 3) we combine the character relations derived from Young calculus
with the Weyl formula [Weyl, 1960; Itzykson and Nauenberg, 1966]:

tr~λg =
det F (~λ)

det F (~0)

where Fkl (~λ) = exp [i (N − k)αl ] and eiα1 , eiα2 , . . . eiαN are the eigenvalues of
g in the fundamental representation
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Scale determination from the zero-temperature potential
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