Renormalization of Polyakov loops in different representations and the large-N limit

Anne Mykkanen, Marco Panero and Kari Rummukainen

Department of Physics and Helsinki Institute of Physics University of Helsinki, Finland

Bari, Italy,
September 21st, 2011

Outline

1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results

Outline

1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results

Preliminaries

■ Lattice simulations of Yang-Mills theories with gauge group $\operatorname{SU}(N)$ at finite temperature

1 The Lagrangian is characterized by exact center symmetry The Polyakov loop $L=\operatorname{tr} \prod_{t=1}^{N_{T}} U_{4}(t)$; order parameter for deconfinement

Preliminaries

- Lattice simulations of Yang-Mills theories with gauge group $\operatorname{SU}(N)$ at finite temperature
■ The Lagrangian is characterized by exact center symmetry
- The Polyakov loop $L=\operatorname{tr} \prod_{t=1}^{N_{T}} U_{4}(t)$; order parameter for deconfinement
- The free energy associated with the bare Polyakov loop is divergent in the continuum: renormalization required [Dotsenko and Vergeles, 1980]

Preliminaries

■ Lattice simulations of Yang-Mills theories with gauge group $\operatorname{SU}(N)$ at finite temperature

■ The Lagrangian is characterized by exact center symmetry
■ The Polyakov loop $L=\operatorname{tr} \prod_{t=1}^{N_{T}} U_{4}(t)$; order parameter for deconfinement

- The free energy associated with the bare Polyakov loop is divergent in the continuum: renormalization required [Dotsenko and Vergeles, 1980]

Preliminaries

■ Lattice simulations of Yang-Mills theories with gauge group $\operatorname{SU}(N)$ at finite temperature

■ The Lagrangian is characterized by exact center symmetry
■ The Polyakov loop $L=\operatorname{tr} \prod_{t=1}^{N_{T}} U_{4}(t)$; order parameter for deconfinement

■ The free energy associated with the bare Polyakov loop is divergent in the continuum: renormalization required [Dotsenko and Vergeles, 1980]

Bare Polyakov loops

Bare Polyakov loops in the fundamental representation

Why large N ?

■ At fixed $\lambda=g^{2} N$ and N_{f}, expansions in powers of $1 / N$ give non-trivial insight onto some non-perturbative features of QCD ['t Hooft, 1974; Witten, 1979; Manohar, 1998]

- Feynmann diagrams; Planar diagram dominance

Formal connection to closed string theory; Topological expansions of amplitude
Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri and Oz, 1999]

Why large N ?

■ At fixed $\lambda=g^{2} N$ and N_{f}, expansions in powers of $1 / N$ give non-trivial insight onto some non-perturbative features of QCD ['t Hooft, 1974; Witten, 1979; Manohar, 1998]

■ Feynmann diagrams; Planar diagram dominance

- Formal connection to closed string theory; Topological expansions of amplitude Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri and $\mathrm{Oz}, 1999]$

Why large N ?

■ At fixed $\lambda=g^{2} N$ and N_{f}, expansions in powers of $1 / N$ give non-trivial insight onto some non-perturbative features of QCD ['t Hooft, 1974; Witten, 1979; Manohar, 1998]

■ Feynmann diagrams; Planar diagram dominance

■ Formal connection to closed string theory; Topological expansions of amplitude \leftrightarrow Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri and Oz , 1999]

Why large N ?

■ Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]

Why large N ?

■ Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
■ Analytical solutions in $D=1+1$ dimensions [Gross and Witten, 1980]

Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]

Why large N ?

■ Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
■ Analytical solutions in $D=1+1$ dimensions [Gross and Witten, 1980]
■ Volume reduction [Eguchi and Kawai, 1982]

Pisarski, 2007]
Relevant for the Yang-Mills equation of state, both in $D=3+1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D=2+1$ dimensions [Caselle et al., 2011]

Why large N ?

■ Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
■ Analytical solutions in $D=1+1$ dimensions [Gross and Witten, 1980]
■ Volume reduction [Eguchi and Kawai, 1982]

- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]
and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and
Gupta, 2010]
Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010 Noronha, 2010]

Why large N ?

■ Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
■ Analytical solutions in $D=1+1$ dimensions [Gross and Witten, 1980]
■ Volume reduction [Eguchi and Kawai, 1982]

- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]
■ Relevant for the Yang-Mills equation of state, both in $D=3+1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D=2+1$ dimensions [Caselle et al., 2011]

Why large N ?

■ Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
■ Analytical solutions in $D=1+1$ dimensions [Gross and Witten, 1980]
■ Volume reduction [Eguchi and Kawai, 1982]

- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]
■ Relevant for the Yang-Mills equation of state, both in $D=3+1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D=2+1$ dimensions [Caselle et al., 2011]
■ Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010; Noronha, 2010]

Why higher representations?

■ Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]

Why higher representations?

■ Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]

- Equivalence of different irreducible representations in the large- N limit
- Also interesting for ETC models: dynamical fermions in different representations, see [Rummukainen, 2011; Del Debbio, 2010] for recent reviews

Why higher representations?

■ Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]
■ Equivalence of different irreducible representations in the large- N limit
■ Effective (matrix) models for the deconfinement region? [Pisarski, 2002]

Why higher representations?

■ Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]
■ Equivalence of different irreducible representations in the large- N limit
■ Effective (matrix) models for the deconfinement region? [Pisarski, 2002]

- Also interesting for ETC models: dynamical fermions in different representations, see [Rummukainen, 2011; Del Debbio, 2010] for recent reviews

Outline

1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results

Polyakov loop renormalization methods

1 Using the $Q \bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$
L_{\text {ren }}=Z^{N_{t}} L_{\text {bare }}, \quad Z=\exp \left(V_{0} a / 2\right)
$$

2 At fixed temperature T, remove the N_{t}-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]
(however, note that g_{0} is not fixed
milerative determination of the renorm alization term, from simulations at two different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]

Polyakov loop renormalization methods

1 Using the $Q \bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$
L_{\text {ren }}=Z^{N_{t}} L_{\text {bare }}, \quad Z=\exp \left(V_{0} a / 2\right)
$$

[2 At fixed temperature T, remove the N_{t}-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]:

$$
F^{\text {bare }}=N_{t} F^{\text {div }}+F^{\text {ren }}+N_{t}^{-1} F^{\text {lat }}+\ldots
$$

(however, note that g_{0} is not fixed ...)
3 Iterative determination of the renormalization term, from simulations at two
different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]
[4 Fixed scale renormalization [Gavai, 2010]

Polyakov loop renormalization methods

1 Using the $Q \bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$
L_{\text {ren }}=Z^{N_{t}} L_{\text {bare }}, \quad Z=\exp \left(V_{0} a / 2\right)
$$

2 At fixed temperature T, remove the N_{t}-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]:

$$
F^{\text {bare }}=N_{t} F^{\text {div }}+F^{\text {ren }}+N_{t}^{-1} F^{\text {lat }}+\ldots
$$

(however, note that g_{0} is not fixed ...)
3 Iterative determination of the renormalization term, from simulations at two different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]

Polyakov loop renormalization methods

1 Using the $Q \bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$
L_{\text {ren }}=Z^{N_{t}} L_{\text {bare }}, \quad Z=\exp \left(V_{0} a / 2\right)
$$

2 At fixed temperature T, remove the N_{t}-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]:

$$
F^{\text {bare }}=N_{t} F^{\text {div }}+F^{\text {ren }}+N_{t}^{-1} F^{\text {lat }}+\ldots
$$

(however, note that g_{0} is not fixed...)
3 Iterative determination of the renormalization term, from simulations at two different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]
4 Fixed scale renormalization [Gavai, 2010]

Outline

1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results

Simulation

■ Simulations with the Wilson action [Wilson, 1974]:

$$
S=\frac{2 N}{g_{0}^{2}} \sum_{x} \sum_{\mu<\nu}\left\{1-\frac{1}{N} \operatorname{Re} \operatorname{tr} U_{\mu, \nu}^{1,1}(x)\right\}
$$

Lüscher and Weisz, 1985]

Simulation algorithm based on a (standard) $1+3$ combination of heat-bath [Creutz, 1980; Kennedy and Pendleton, 1985] and overrelaxation [Adler, 1981; Brown and Woch, 1987] updates on SU(2) subgroups [Cabibbo and Marinari, 1982]

Simulation

■ Simulations with the Wilson action [Wilson, 1974]:

$$
S=\frac{2 N}{g_{0}^{2}} \sum_{x} \sum_{\mu<\nu}\left\{1-\frac{1}{N} \operatorname{Re} \operatorname{tr} U_{\mu, \nu}^{1,1}(x)\right\}
$$

■ . . . and with the tree-level improved action [Curci, Menotti and Paffuti, 1983; Lüscher and Weisz, 1985]:

$$
S=\frac{2 N}{g_{0}^{2}} \sum_{x} \sum_{\mu<\nu}\left\{1-\frac{1}{N} \operatorname{Re} \operatorname{tr}\left[\frac{5}{3} U_{\mu, \nu}^{1,1}(x)-\frac{1}{12} U_{\mu, \nu}^{1,2}(x)-\frac{1}{12} U_{\nu, \mu}^{1,2}(x)\right]\right\}
$$

Simulation algorithm based on a (standard) $1+3$ combination of heat-bath [Creutz, 1980; Kennedy and Pendleton, 1985] and overrelaxation [Adler, 1981; Brown and Woch, 1987] updates on SU(2) subgroups [Cabibbo and Marinari, 1982]

Simulation

■ Simulations with the Wilson action [Wilson, 1974]:

$$
S=\frac{2 N}{g_{0}^{2}} \sum_{x} \sum_{\mu<\nu}\left\{1-\frac{1}{N} \operatorname{Re} \operatorname{tr} U_{\mu, \nu}^{1,1}(x)\right\}
$$

■ ... and with the tree-level improved action [Curci, Menotti and Paffuti, 1983; Lüscher and Weisz, 1985]:

$$
S=\frac{2 N}{g_{0}^{2}} \sum_{x} \sum_{\mu<\nu}\left\{1-\frac{1}{N} \operatorname{Re} \operatorname{tr}\left[\frac{5}{3} U_{\mu, \nu}^{1,1}(x)-\frac{1}{12} U_{\mu, \nu}^{1,2}(x)-\frac{1}{12} U_{\nu, \mu}^{1,2}(x)\right]\right\}
$$

■ Simulation algorithm based on a (standard) $1+3$ combination of heat-bath [Creutz, 1980; Kennedy and Pendleton, 1985] and overrelaxation [Adler, 1981; Brown and Woch, 1987] updates on $\mathrm{SU}(2)$ subgroups [Cabibbo and Marinari, 1982]

Setting the scale

- For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]

Setting the scale

■ For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]
■ For the tree-level improved action: static potential at $T=0$ from Wilson loops $W(r, L)$:

$$
V(r)=\lim _{L \rightarrow \infty} \ln \frac{W(r, L-a)}{W(r, L)}, \quad W(r, L)=e^{-L \cdot V(r)}+\ldots
$$

Setting the scale

■ For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]
■ For the tree-level improved action: static potential at $T=0$ from Wilson loops $W(r, L)$:

$$
V(r)=\lim _{L \rightarrow \infty} \ln \frac{W(r, L-a)}{W(r, L)}, \quad W(r, L)=e^{-L \cdot V(r)}+\ldots
$$

- Iteratively smeared spacelike links:

$$
U_{\mu}^{(i+1)}(x)=U \in \operatorname{SU}(N) \text { which maximizes } \operatorname{Re} \operatorname{tr}\left(U^{\dagger} W\right)
$$

with:

$$
W=(1-k) U_{\mu}^{(i)}(x)+\frac{k}{4} \sum U_{\text {staple }}^{(i)}
$$

- Fits to the Cornell potential to extract the string tension:

Setting the scale

■ For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]
■ For the tree-level improved action: static potential at $T=0$ from Wilson loops $W(r, L)$:

$$
V(r)=\lim _{L \rightarrow \infty} \ln \frac{W(r, L-a)}{W(r, L)}, \quad W(r, L)=e^{-L \cdot V(r)}+\ldots
$$

- Iteratively smeared spacelike links:

$$
U_{\mu}^{(i+1)}(x)=U \in \mathrm{SU}(N) \text { which maximizes } \operatorname{Retr}\left(U^{\dagger} W\right)
$$

with:

$$
W=(1-k) U_{\mu}^{(i)}(x)+\frac{k}{4} \sum U_{\text {staple }}^{(i)}
$$

- Fits to the Cornell potential to extract the string tension:

$$
V(r)=\sigma r+V_{0}+\frac{\gamma}{r}
$$

Setting the scale

■ For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]
■ For the tree-level improved action: static potential at $T=0$ from Wilson loops $W(r, L)$:

$$
V(r)=\lim _{L \rightarrow \infty} \ln \frac{W(r, L-a)}{W(r, L)}, \quad W(r, L)=e^{-L \cdot V(r)}+\ldots
$$

■ Iteratively smeared spacelike links:

$$
U_{\mu}^{(i+1)}(x)=U \in \operatorname{SU}(N) \text { which maximizes } \operatorname{Re} \operatorname{tr}\left(U^{\dagger} W\right)
$$

with:

$$
W=(1-k) U_{\mu}^{(i)}(x)+\frac{k}{4} \sum U_{\text {staple }}^{(i)}
$$

■ Fits to the Cornell potential to extract the string tension:

$$
V(r)=\sigma r+V_{0}+\frac{\gamma}{r}
$$

■ Comparison with a scale setting from the determination of the critical temperature [Caselle, Panero and Piemonte, 2011]

Irreducible representations

■ For $\operatorname{SU}(2)$, the recursive formula for obtaining characters of any irreducible representation:

$$
\operatorname{tr}_{n+1} g=\operatorname{tr}_{n} g \operatorname{tr}_{1} g-\operatorname{tr}_{n-1} g \text { with: } \operatorname{tr}_{0} g=1
$$

> calculus and the relation between the traces in the fundamental and anti-fundamental irreducible representation:

For $\mathrm{SU}(N>3)$ we combine the character relations derived from Young calculus with the Weyl formula [Weyl, 1960; Itzykson and Nauenberg, 1966]

Irreducible representations

- For $\operatorname{SU}(2)$, the recursive formula for obtaining characters of any irreducible representation:

$$
\operatorname{tr}_{n+1} g=\operatorname{tr}_{n} g \operatorname{tr}_{1} g-\operatorname{tr}_{n-1} g \text { with: } \operatorname{tr}_{0} g=1
$$

- For $\operatorname{SU}(3)$, the characters of higher representations are obtained using the Young calculus and the relation between the traces in the fundamental and anti-fundamental irreducible representation:

$$
\frac{1}{2}\left[\left(\operatorname{tr}_{f} g\right)^{2}-\operatorname{tr}_{f}\left(g^{2}\right)\right]=\operatorname{tr}_{\bar{f}} g=\left(\operatorname{tr}_{f} g\right)^{\star}
$$

- For $\mathrm{SU}(N>3)$ we combine the character relations derived from Young calculus with the Weyl formula [Weyl, 1960; Itzykson and Nauenberg, 1966]:

Irreducible representations

- For $\operatorname{SU}(2)$, the recursive formula for obtaining characters of any irreducible representation:

$$
\operatorname{tr}_{n+1} g=\operatorname{tr}_{n} g \operatorname{tr}_{1} g-\operatorname{tr}_{n-1} g \text { with: } \operatorname{tr}_{0} g=1
$$

- For $\operatorname{SU}(3)$, the characters of higher representations are obtained using the Young calculus and the relation between the traces in the fundamental and anti-fundamental irreducible representation:

$$
\frac{1}{2}\left[\left(\operatorname{tr}_{f} g\right)^{2}-\operatorname{tr}_{f}\left(g^{2}\right)\right]=\operatorname{tr}_{\bar{f}} g=\left(\operatorname{tr}_{f} g\right)^{\star}
$$

- For $\operatorname{SU}(N>3)$ we combine the character relations derived from Young calculus with the Weyl formula [Weyl, 1960; Itzykson and Nauenberg, 1966]:

$$
\operatorname{tr}_{\vec{\lambda}} g=\frac{\operatorname{det} F(\vec{\lambda})}{\operatorname{det} F(\overrightarrow{0})}
$$

where $F_{k l}(\vec{\lambda})=\exp \left[i(N-k) \alpha_{l}\right]$ and $e^{i \alpha_{1}}, e^{i \alpha_{2}}, \ldots e^{i \alpha_{N}}$ are the eigenvalues of g in the fundamental representation

Outline

1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results

Scale determination from the zero-temperature potential

Wilson loop ratios (5 levels of smearing, $k=0.3$)
$\operatorname{SU}(4), 16{ }^{4}$ lattice, tree-level improved action, $\beta=8$

Scale determination from the zero-temperature potential

Scale determination from the zero-temperature potential

Zero-temperature string tension from smeared Wilson loops
$\mathrm{SU}(4)$, tree-level improved action

Scale determination from the zero-temperature potential

$1 / r$ term from smeared Wilson loops
SU(4), tree-level improved action

Scale determination from the zero-temperature potential

Renormalization factor from smeared Wilson loops
SU(4), tree-level improved action

Scale determination from the zero-temperature potential

Casimir scaling of bare Polyakov loops
$\mathrm{SU}(4)$, tree-level improved action, $N_{t}=5$

Scale determination from the zero-temperature potential

