Bulk viscosity of color-superconducting quark matter

Mark Alford

Washington University
Saint Louis, USA

M. Alford, M. Braby, S. Reddy, T. Schäfer, nucl-th/0701067

Reviews: M. Alford, K. Rajagopal, hep-ph/0606157
Color superconductivity: Cooper pairing of quarks

At sufficiently high density and low temperature, there is a Fermi sea of almost free quarks.

\[\mu = E_F \]

But quarks have attractive QCD interactions.

\[F = E - \mu N \]

Any attractive quark-quark interaction causes pairing instability of the Fermi surface. This is the Bardeen-Cooper-Schrieffer (BCS) mechanism of superconductivity.

Color superconductivity in three flavor quark matter

Unpaired

\[p_F \]

\[M_{s/4\mu} \]

\[\begin{array}{c}
 u \\
 u \\
 d \\
 s \\
\end{array} \]

red green blue

\[\begin{array}{c}
 \text{red} \\
 \text{green} \\
 \text{blue} \\
\end{array} \]

2SC pairing

\[p_F \]

\[\begin{array}{c}
 u \\
 u \\
 d \\
 s \\
\end{array} \]

red green blue

\[\begin{array}{c}
 \text{red} \\
 \text{green} \\
 \text{blue} \\
\end{array} \]

CFL pairing

\[p_F \]

\[\begin{array}{c}
 u \\
 u \\
 d \\
 s \\
\end{array} \]

red green blue

\[\begin{array}{c}
 \text{red} \\
 \text{green} \\
 \text{blue} \\
\end{array} \]

2SC: Two-flavor pairing phase. May occur at intermediate densities.

\[\langle q_i^\alpha q_j^\beta \rangle \sim \epsilon^{\alpha\beta 3} \epsilon_{ij} \text{ i.e., } (rg - gr)(ud - du) \]

CFL: Color-flavor-locked phase, favored at the highest densities.

\[\langle q_i^\alpha q_j^\beta \rangle \sim \delta_i^\alpha \delta_j^\beta - \delta_j^\alpha \delta_i^\beta = \epsilon^{\alpha\beta N} \epsilon_{ijN} \]

(color \(\alpha, \beta \), flavor \(i, j = u, d, s \)); (Alford, Rajagopal, Wilczek, hep-ph/9804403)
I. High density QCD

Conjectured phase diagram

Right panels: NJL model with coupled chiral and color-superconducting condensates.

(Rüster, Werth, Buballa, Shovkovy, Rischke, hep-ph/0503184)
Signatures of color superconductivity in compact stars

Where in the universe is color-superconducting quark matter most likely to exist? In compact stars.

A quick history of a compact star.

A star of mass $M \gtrsim 10 M_\odot$ burns Hydrogen by fusion, ending up with an Iron core. Core grows to Chandrasekhar mass, collapses \Rightarrow supernova. Remnant is a compact star:

<table>
<thead>
<tr>
<th>mass</th>
<th>radius</th>
<th>density</th>
<th>initial temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sim 1.4 M_\odot$</td>
<td>$\mathcal{O}(10 \text{ km})$</td>
<td>$\geq \rho_{\text{nuclear}}$</td>
<td>~ 30 MeV</td>
</tr>
</tbody>
</table>

The star cools by neutrino emission for the first million years.
How would color superconductivity affect the star?

Pairing energy \(\text{affects Equation of state. Hard to detect.} \)

(Alford, Braby, Paris, Reddy, nucl-th/0411016)

Gaps in quark spectra and Goldstone bosons \(\text{affect Transport properties:} \)

- emissivity, heat capacity, viscosity (shear, bulk),
- conductivity (electrical, thermal)

1. Cooling by neutrino emission, neutrino pulse at birth
 Reddy, Sadzikowski, Tachibana, nucl-th/0306015; Grigorian, Blaschke, Voskresensky

2. Glitches and crystalline ("LOFF") pairing
 (Alford, Bowers, Rajagopal, hep-ph/0008208)

3. Gravitational waves: r-mode instability, shear and bulk viscosity
 (Madsen, astro-ph/9912418; Manuel, Dobado, Llanes-Estrada, hep-ph/0406058,
 Alford, Schmitt nucl-th/0608019, Alford, Braby, Reddy, Schäfer nucl-th/0701067,
 Manuel, Llanes-Estrada arXiv:0705.3909)
r-modes: gravitational spin-down of compact stars

An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.

The Lindblom group at Caltech has made a movie of r-mode evolution.

http://www.cacr.caltech.edu/projects/hydrligo/rmode.html

r-modes are unstable if rotation rate $\Omega > \Omega_{\text{crit}}(T)$, and they can spin the star down within months (Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom astro-ph/0101136).

Once we measure T and Ω for a star, we can put an upper limit on $\Omega_{\text{crit}}(T)$.
Constraints from r-modes (Madsen, astro-ph/9912418)

Predicted $\Omega_{\text{crit}}(T)$ for various phases. Shaded regions above curves are unstable: viscosity is too low to hold back the r-modes.

Nuclear matter

Unpaired ($m_s = 200$)

2SC ($m_s = 200$)

Dotted lines: $m_s = 100$ MeV; $\underline{m_s} = \text{millisecond pulsars}$

According to Madsen’s original calculation, pairing always lowers bulk viscosity, making **2SC** more vulnerable to r-modes.

We find that actually $\zeta_{2SC} > \zeta_{\text{unp}}$ at high T. We expect this will move the Ω_{crit} line outward (dark red arrows).
What is bulk viscosity?

(L. viscum = mistletoe; It. vischio, Jp. ickle, Gm. Mistelzweig, Sp. muérdago, Fr. gui, Ru. omela)

A sticky glue was made from mistletoe berries and coated onto small tree branches to catch birds.

Energy consumed in a compression cycle:

\[V(t) = \bar{V} + \text{Re}[\delta V \exp(i\omega t)] \]

\[p(t) = \bar{p} + \text{Re}[\delta p \exp(i\omega t)] \]

\[
\langle \frac{dE}{dt} \rangle = -\frac{\zeta}{\tau} \int_0^\tau (\text{div} \ \vec{v})^2 \, dt = \frac{\zeta}{2} \omega^2 \frac{\delta V^2}{\bar{V}^2} = -\frac{1}{\tau \bar{V}} \int_0^\tau p(t) \frac{dV}{dt} \, dt
\]

\[
\Rightarrow \zeta(\omega, T) = -\frac{\bar{V}}{\delta V} \frac{\text{Im}(\delta p)}{\omega}
\]

Physically, bulk viscosity arises from re-equilibration processes. If some quantity goes out of equilibrium on compression, and re-equilibrates on a timescale comparable to \(\tau \), then pressure gets out of phase with volume and energy is consumed. (Just like \(V \) and \(Q \) in a \(R-C \) circuit.)
Flavor re-equilibration processes

phase: 2SC CFL (not CFL-K^0)

lightest modes: unpaired (“blue”) quarks H, K^0

flavor equilibration: $u + d \leftrightarrow s + u$ $K^0 \leftrightarrow H$ H $K^0 H \leftrightarrow H$

\[u \xrightarrow{W^\pm} s \]
\[d \xrightarrow{W^\pm} u \]
CFL thermal kaon bulk viscosity

(Alford, Braby, Reddy, Schäfer nucl-th/0701067)

\[K^0 \text{ dispersion relation:} \]

\[E(p) = -\frac{M_s^2}{2\mu} + \sqrt{\frac{1}{3}p^2 + m_{K^0}^2} \]

\[\approx m_{K^0} - \frac{M_s^2}{2\mu} + \frac{1}{3}p^2 \]

\[\underbrace{\delta m}_{\text{phonon splitting}} \]

Thermal kaon density \(\sim \exp(-\delta m/T) \), drops rapidly for \(T \ll \delta m \).

Kaons dominate bulk viscosity for \(T \gtrsim \delta m/30 \).

Superfluid mode ("phonon") splitting dominates in some temp range if \(\delta m \gtrsim 2 \text{ MeV} \) (Manuel, Llanes-Estrada arXiv:0705.3909)
How bulk viscosity depends on equilibration rate

\[\zeta(\omega, T) = C(T) \frac{\gamma_K(T)}{\gamma_K(T)^2 + \omega^2} \]

- \(\omega \) is angular frequency of applied compression cycle.
- \(C \) measures the sensitivity of \(n_K \) and \(n_q \) to changes in \(\mu_K \) and \(\mu \).
- \(\gamma_K \) is the average kaon width, from \(K^0 \leftrightarrow H \).

Graphical representations:
- **Left graph:** Shows the function \(C(\tau, \delta m) \) for different values of \(\delta m \) and \(\tau = 1 \text{ ms} \).
- **Right graph:** Displays \(\gamma_{\text{eff}}(\delta m) \) for various \(\delta m \) values with \(\tau = 1 \text{ ms} \). The graph includes lines for different \(\delta m \) values such as 0.1 MeV, 0.5 MeV, 5 MeV, and 10 MeV.
CFL kaonic bulk viscosity: dependence on ω

\[\zeta(\omega, T) = C(T) \frac{\gamma_K(T)}{\gamma_K(T)^2 + \omega^2} \]

At high temp, $\gamma_K(T)$ rises, and ω becomes negligible.

For unpaired quark matter, C is indp of T, and the resonance peak at $\gamma_K(T) = \omega$ is clear.

As the frequency of compression drops,

- The peak in ζ_{unp}, which occurs where $\gamma_K(T) = \omega$, drops to lower temp.
- The peak value rises: $\zeta_{\text{max}} = \frac{1}{2} C/\omega$.
Quark matter bulk viscosity: Summary

- Unpaired and 2SC have the largest bulk viscosity, because they have unpaired modes at Fermi surface (large phase space).
- K^0 density $\sim \exp(-\delta m/T)$ drops rapidly for $T \lesssim \delta m/10$.
- $\delta m = m_{K^0} - M_s^2/(2\mu)$ could be anything from negative (kaon condensation) to ~ 10 MeV.
- Superfluid modes ("phonons") alone contribute some bulk viscosity.

Alford, Schmitt nucl-th/0608019; Alford, Braby, Reddy, Schäfer nucl-th/0701067;
Manuel, Llanes-Estrada arXiv:0705.3909
Looking to the future

- Neutron-star phenomenology of color superconducting quark matter:
 - shear and bulk viscosity of $\text{CFL}-K^0$, other phases...
 - detailed analysis of r-mode profiles in hybrid star
 - heat capacity, conductivity and emissivity (neutrino cooling)
 - structure: nuclear-quark interface (gravitational waves?)
 - crystalline phase (glitches)
 - CFL: vortices but no flux tubes

- More general questions:
 - magnetic instability of gapless phases
 - better weak-coupling calculations, include vertex corrections
 - go beyond mean-field, include fluctuations
 - solve the sign problem and do lattice QCD at high density.
Calculating bulk viscosity for a known equilibration rate

Suppose the equilibrating quantity is \(n_y \) (this will be \(n_d - n_s \)).

Corresponding chemical potential \(\mu_y = \delta\mu_y \exp(i\omega t) \).

We want \(\text{Im}(\delta p) = \text{Im}\left(\frac{dp}{d\mu_y} \delta\mu_y\right) = n_y \text{Im}(\delta\mu_y) \).

Write \(\dot{n}_y \) two ways:

\[
\frac{dn_y}{d\mu_y} \dot{\mu}_y = -\frac{n_y}{V} \dot{V} - (n_y - \bar{n}_y) \Gamma
\]

\[
\Rightarrow \frac{dn_y}{d\mu_y} (i\omega + \gamma) \delta\mu_y = -\frac{n_y}{V} i\omega \delta V
\]

writing \(\Gamma \equiv \gamma \frac{dn_y}{d\mu_y} \)

\[
\Rightarrow \delta\mu_y = \frac{-i\omega}{i\omega + \gamma} \bar{n}_y \left(\frac{dn_y}{d\mu_y} \right)^{-1} \frac{\delta V}{V}
\]

\[
\Rightarrow \text{Im}(\delta p) = \bar{n}_y \text{Im}(\delta\mu_y) = \frac{-\omega \gamma}{\omega^2 + \gamma^2} \frac{\delta V}{V} \bar{n}_y^2 \left(\frac{dn_y}{d\mu_y} \right)^{-1}
\]

\[
\Rightarrow \zeta = -\frac{\bar{V}}{\delta V} \frac{\text{Im}(\delta p)}{\omega} = \bar{n}_y^2 \left(\frac{dn_y}{d\mu_y} \right)^{-1} \frac{\gamma}{\gamma^2 + \omega^2}
\]