Effective gluon mass and infrared fixed point in QCD

Arlene C. Aguilar¹ J. Papavassiliou¹

¹University of Valencia, Spain

QCD @ Work, Martina Franca, 16-20th June 2007

< ロ > < 同 > < 回 > < 回 > < 回 > <

General Considerations for the Effective Gluon Mass

IR finite gluon propagator (Δ⁻¹(0) ≠ 0) allows for a definition of a Effective Gluon Mass.

Features:

- Generated dynamically.
- It is not a hard mass! Local gauge invariance is preserved
- A momentum dependent mass $m(p^2)$.
- Drops off at UV recover the pertubative behavior.
- No fundamental scalars appear in the spectrum.
- Purely non-perturbative effect.

< ロ > < 同 > < 回 > < 回 > < 回 > <

General Considerations for the Effective Gluon Mass

IR finite gluon propagator (Δ⁻¹(0) ≠ 0) allows for a definition of a Effective Gluon Mass.

Features:

- Generated dynamically.
- It is not a hard mass! Local gauge invariance is preserved
- A momentum dependent mass $m(p^2)$.
- Drops off at UV recover the pertubative behavior.
- No fundamental scalars appear in the spectrum.

• Purely non-perturbative effect.

General Considerations for the Effective Gluon Mass

IR finite gluon propagator (Δ⁻¹(0) ≠ 0) allows for a definition of a Effective Gluon Mass.

Features:

- Generated dynamically.
- It is not a hard mass! Local gauge invariance is preserved
- A momentum dependent mass $m(p^2)$.
- Drops off at UV recover the pertubative behavior.
- No fundamental scalars appear in the spectrum.
- Purely non-perturbative effect.

イロト イポト イヨト イヨト

Non-perturbative scheme - SDE

Non-perturbative tools:

- Lattice QCD (discrete approach)
- Schwinger-Dyson Equation (continuum approach)

What is Schwinger-Dyson Equation?

- The equations of motion for Green's functions.
- They are coupled integral equations. Forming an infinite tower of coupled equations.
- Obviously, the complete infinite tower is insoluble.
- Truncation scheme is necessary to make any problem tractable.

Non-perturbative tools:

- Lattice QCD (discrete approach)
- Schwinger-Dyson Equation (continuum approach)

What is Schwinger-Dyson Equation?

- The equations of motion for Green's functions.
- They are coupled integral equations. Forming an infinite tower of coupled equations.
- Obviously, the complete infinite tower is insoluble.
- Truncation scheme is necessary to make any problem tractable.

(日)(周)((日)(日)(日))

Non-perturbative tools:

- Lattice QCD (discrete approach)
- Schwinger-Dyson Equation (continuum approach)

What is Schwinger-Dyson Equation?

- The equations of motion for Green's functions.
- They are coupled integral equations. Forming an infinite tower of coupled equations.
- Obviously, the complete infinite tower is insoluble.
- Truncation scheme is necessary to make any problem tractable.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Truncation scheme must respect:

- Gauge and renormalization-group invariances
- The truncation is guided through the Pinch Technique.

Diagrammatic rearrangement of perturbative expansion (to all orders) gives rise to effective Green's functions with desirable properties.

• To all orders,

 $\mathbf{Pinch-Technique} \longleftrightarrow \mathbf{Feynman} \ \mathbf{gauge} \ \mathbf{of} \ \mathbf{Background} \ \mathbf{Field} \ \mathbf{Method}$

(4月) イヨト イヨト

PT Properties

- New Feynman rules
- Green's functions respect QED-like Ward-Identities instead of Slavnov-Taylor Identities

$$q_{1}^{\mu} \underbrace{\tilde{\mathbb{\Gamma}}_{\mu\alpha\beta}^{abc}(q_{1}, q_{2}, q_{3})}_{\textbf{3-gluon vertex}} = gf^{abc} \underbrace{[\Delta_{\alpha\beta}^{-1}(q_{2}) - \Delta_{\alpha\beta}^{-1}(q_{3})]}_{\textbf{gluon propagators}}$$
$$q_{1}^{\mu} \underbrace{\tilde{\mathbb{\Gamma}}_{\mu}^{acb}(q_{2}, q_{1}, q_{3})}_{\textbf{gluon-ghost vertex}} = gf^{abc} \underbrace{[D^{-1}(q_{2}) - D^{-1}(q_{3})]}_{\textbf{ghost propagators}}$$

• Consequently the fundamental QED-like relation,

$$egin{array}{lll} \widehat{Z}_g = \widehat{Z}_A^{-1/2}\,, & ext{where} & g_{\mathsf{o}} &=& \widehat{Z}_g\,g\,, \ \widehat{\Delta}_{\mathsf{o}} &=& \widehat{Z}_A\,\widehat{\Delta} \end{array}$$

is held in the PT-BFM framework.

・ロト ・四ト ・ヨト ・ヨト

Conventional X BFM

イロト イヨト イヨト イヨト

$$\begin{vmatrix} -1 & -1 \\ | \cdots \\ | \cdots \\ | = \cdots \\ (a_1) \end{vmatrix} + \frac{1}{2} | \cdots \\ (a_2) \\ (a_1) \end{vmatrix} + \frac{1}{2} | \cdots \\ (a_2) \\ (a_1) \end{vmatrix}$$

$$\widehat{\Delta}^{-1}(q^2)\mathsf{P}_{\mu\nu}(q) = q^2\mathsf{P}_{\mu\nu}(q) + i\left[\widehat{\Pi}^{(\mathbf{a_1})}_{\mu\nu}(q) + \widehat{\Pi}^{(\mathbf{a_2})}_{\mu\nu}\right]$$

$$egin{aligned} \widehat{\Pi}^{(\mathbf{a_1})}_{\mu
u}(q) &= rac{1}{2}\,C_A\,g^2\,\int\!\![dk]\widetilde{\Gamma}_{\mulphaeta}\widehat{\Delta}^{lphalpha'}(k)\widetilde{\Pi}_{
ulpha'eta'}\widehat{\Delta}^{etaeta'}(k+q) \ \widehat{\Pi}^{(\mathbf{a_2})}_{\mu
u} &= -C_A\,g^2\,g_{\mu
u}\,\int\!\![dk]\widehat{\Delta}(k) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The expression for the vertex that we will use is given by

$$\tilde{\mathbb{\Gamma}}^{\mu\alpha\beta} = \underline{L}^{\mu\alpha\beta} + T_1^{\mu\alpha\beta} + T_2^{\mu\alpha\beta}$$

with

$$\begin{array}{lcl} L^{\mu\alpha\beta}(q,p_{1},p_{2}) & = & \widetilde{\Gamma}^{\mu\alpha\beta}(q,p_{1},p_{2}) + ig^{\alpha\beta}\,\frac{q^{\mu}}{q^{2}}\,\left[\widehat{\Pi}(p_{2}) - \widehat{\Pi}(p_{1})\right] \\ T_{1}^{\mu\alpha\beta}(q,p_{1},p_{2}) & = & -i\frac{c_{1}}{q^{2}}\left(q^{\beta}g^{\mu\alpha} - q^{\alpha}g^{\mu\beta}\right)\left[\widehat{\Pi}(p_{1}) + \widehat{\Pi}(p_{2})\right] \\ T_{2}^{\mu\alpha\beta}(q,p_{1},p_{2}) & = & -ic_{2}\left(q^{\beta}g^{\mu\alpha} - q^{\alpha}g^{\mu\beta}\right)\left[\frac{\widehat{\Pi}(p_{1})}{p_{1}^{2}} + \frac{\widehat{\Pi}(p_{2})}{p_{2}^{2}}\right] \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

SD equation

$$\Delta^{-1}(x) = Kx + ilde{b}g^2 \sum_{i=1}^8 a_i A_i(x) + \Delta^{-1}(0)$$

$$egin{array}{rll} A_1(x) &=& a_1\,x\,\int_x^\infty dyy\Delta^2(y) \ A_2(x) &=& a_2\,x\,\int_x^\infty dy\Delta(y) \ A_3(x) &=& a_3\,x\Delta(x)\int_0^x dyy\Delta(y) \ A_4(x) &=& a_4\,\int_0^x dyy^2\Delta^2(y) \ \end{array}$$

I

The renormalization condition K is fixed by $\widehat{\Delta}^{-1}(\mu^2) = \mu^2$

▲圖▶ ▲ 国▶ ▲ 国▶

The UV behavior of effective gluon mass

$$m^2(x)\ln x = d^{-1}(0) + \gamma_1 \int_0^x dy \, m^2(y) \tilde{\Delta}(y) + rac{\gamma_2}{x} \int_0^x dy \, y m^2(y) \tilde{\Delta}(y)$$

with

$$egin{aligned} & ilde{\Delta}(q^2) = rac{1}{q^2 + m^2(q^2)}, \ &\gamma_1 = rac{6}{5}(1+c_2-c_1) \quad \gamma_2 = rac{4}{5} + rac{6c_1}{5}\,, \end{aligned}$$

There are two possible asymptotic solutions:

$$egin{array}{rcl} m_1^2(x)&=&\lambda_1^2(\ln x)^{-1+\gamma_1}&\Longrightarrow\langle A_\mu^aA_a^\mu
angle\ m_2^2(x)&=&rac{\lambda_2^4}{x}(\ln x)^{\gamma_2-1}&\Longrightarrow\langle G_{\mu
u}^aG_a^{\mu
u}
angle \end{array}$$

A. C. Aguilar Effective gluon mass and IR fixed point in QCD

- 4 回 ト - 4 回 ト - 4 回 ト

The UV behavior of effective gluon mass

$$m^2(x)\ln x = d^{-1}(0) + \gamma_1 \int_0^x dy \ m^2(y) \tilde{\Delta}(y) + rac{\gamma_2}{x} \int_0^x dy \ ym^2(y) \tilde{\Delta}(y)$$

with

$$egin{aligned} & ilde{\Delta}(q^2) = rac{1}{q^2 + m^2(q^2)}, \ & \gamma_1 = rac{6}{5}(1+c_2-c_1) \quad \gamma_2 = rac{4}{5} + rac{6c_1}{5}\,, \end{aligned}$$

There are two possible asymptotic solutions:

$$egin{array}{rcl} m_1^2(x)&=&\lambda_1^2(\ln x)^{-1+\gamma_1}&\Longrightarrow \langle A^a_\mu A^\mu_a
angle\ m_2^2(x)&=&rac{\lambda_2^4}{x}(\ln x)^{\gamma_2-1}&\Longrightarrow \langle G^a_{\mu
u}\,G^{\mu
u}_a
angle
angle$$

Propagator and Running Masses

The RG quantity, $d(q^2) = g^2 \Delta(q^2)$, has the general form:

$$d(q^2) = rac{\overline{g}^2(q^2)}{q^2 + m^2(q^2)}$$
 ,

where the dynamical mass is

$$m_1^2(q^2) = m_0^2 \left[\ln\left(\frac{q^2 + \rho m_0^2}{\Lambda^2}\right) / \ln\left(\frac{\rho m_0^2}{\Lambda^2}\right) \right]^{-1+\gamma_1}$$
$$m_2^2(q^2) = \frac{m_0^4}{q^2 + m_0^2} \left[\ln\left(\frac{q^2 + \rho m_0^2}{\Lambda^2}\right) / \ln\left(\frac{\rho m_0^2}{\Lambda^2}\right) \right]^{\gamma_2 - 1}$$

A. C. Aguilar Effective gluon mass and IR fixed point in QCD

Propagator and Running Masses

The RG quantity, $d(q^2) = g^2 \Delta(q^2)$, has the general form:

$$d(q^2) = rac{\overline{g}^2(q^2)}{q^2 + m^2(q^2)}$$
 ,

where the dynamical mass is

$$m_1^2(q^2) = m_0^2 \left[\ln\left(\frac{q^2 + \rho m_0^2}{\Lambda^2}\right) / \ln\left(\frac{\rho m_0^2}{\Lambda^2}\right) \right]^{-1+\gamma_1}$$
$$m_2^2(q^2) = \frac{m_0^4}{q^2 + m_0^2} \left[\ln\left(\frac{q^2 + \rho m_0^2}{\Lambda^2}\right) / \ln\left(\frac{\rho m_0^2}{\Lambda^2}\right) \right]^{\gamma_2 - 1}$$

A. C. Aguilar Effective gluon mass and IR fixed point in QCD

Propagator and Running Masses

The RG quantity, $d(q^2) = g^2 \Delta(q^2)$, has the general form:

$$d(q^2) = rac{\overline{g}^2(q^2)}{q^2 + m^2(q^2)}$$
 ,

where the dynamical mass is

or

$$m_{1}^{2}(q^{2}) = m_{0}^{2} \left[\ln \left(\frac{q^{2} + \rho m_{0}^{2}}{\Lambda^{2}} \right) / \ln \left(\frac{\rho m_{0}^{2}}{\Lambda^{2}} \right) \right]^{-1 + \gamma_{1}}$$
$$m_{2}^{2}(q^{2}) = \frac{m_{0}^{4}}{q^{2} + m_{0}^{2}} \left[\ln \left(\frac{q^{2} + \rho m_{0}^{2}}{\Lambda^{2}} \right) / \ln \left(\frac{\rho m_{0}^{2}}{\Lambda^{2}} \right) \right]^{\gamma_{2} - 1}$$

A. C. Aguilar Effective gluon mass and IR fixed point in QCD

and $\overline{g}^2(q^2)$

$$\overline{g}^2(q^2) = \left[ilde{b} \ln\left(rac{q^2+f(q^2,m^2(q^2))}{\Lambda^2}
ight)
ight]^{-1}$$

- It displays asymptotic freedom in the UV.
- Freezes at a finite value in the low energy regime

Infrared Fixed Point for QCD !.

(本間) (本臣) (王)

Numerical Analysis

Numerical Analysis

Numerical Analysis

A. C. Aguilar

Effective gluon mass and IR fixed point in QCD

- We study the SD for the RG quantity $d(q^2)$
- Gluon propagator finite and fitted by a massive propagator
- The effective gluon mass has special properties:
 - It is a momentum dependent mass.
 - Vanishes in the deep ultraviolet region
 - Two asymptotic behaviors were found : Logarithmic a Power-law running
 - It is the 3-gluon vertex which decides what is behavior that the mass will develop!
- A effective charge (process-idependent) which displays:
 - Asympotic freedom in the UV
 - Infrared fixed point at IR! (Freezes at a finite value!)

(日)(周)((日)(日)(日))

- We study the SD for the RG quantity $d(q^2)$
- Gluon propagator finite and fitted by a massive propagator
- The effective gluon mass has special properties:
 - It is a momentum dependent mass.
 - Vanishes in the deep ultraviolet region
 - Two asymptotic behaviors were found : Logarithmic a Power-law running
 - It is the 3-gluon vertex which decides what is behavior that the mass will develop!
- A effective charge (process-idependent) which displays:
 - Asympotic freedom in the UV
 - Infrared fixed point at IR! (Freezes at a finite value!)

- We study the SD for the RG quantity $d(q^2)$
- Gluon propagator finite and fitted by a massive propagator
- The effective gluon mass has special properties:
 - It is a momentum dependent mass.
 - Vanishes in the deep ultraviolet region
 - Two asymptotic behaviors were found : Logarithmic a Power-law running
 - It is the 3-gluon vertex which decides what is behavior that the mass will develop!
- A effective charge (process-idependent) which displays:
 - Asympotic freedom in the UV
 - Infrared fixed point at IR! (Freezes at a finite value!)

- We study the SD for the RG quantity $d(q^2)$
- Gluon propagator finite and fitted by a massive propagator
- The effective gluon mass has special properties:
 - It is a momentum dependent mass.
 - Vanishes in the deep ultraviolet region
 - Two asymptotic behaviors were found : Logarithmic a Power-law running
 - It is the 3-gluon vertex which decides what is behavior that the mass will develop!
- A effective charge (process-idependent) which displays:
 - Asympotic freedom in the UV
 - Infrared fixed point at IR! (Freezes at a finite value!)

(日) (同) (目) (日) (日) []

- We study the SD for the RG quantity $d(q^2)$
- Gluon propagator finite and fitted by a massive propagator
- The effective gluon mass has special properties:
 - It is a momentum dependent mass.
 - Vanishes in the deep ultraviolet region
 - Two asymptotic behaviors were found : Logarithmic a Power-law running
 - It is the 3-gluon vertex which decides what is behavior that the mass will develop!
- A effective charge (process-idependent) which displays:
 - Asympotic freedom in the UV
 - Infrared fixed point at IR! (Freezes at a finite value!)

- We study the SD for the RG quantity $d(q^2)$
- Gluon propagator finite and fitted by a massive propagator
- The effective gluon mass has special properties:
 - It is a momentum dependent mass.
 - Vanishes in the deep ultraviolet region
 - Two asymptotic behaviors were found : Logarithmic a Power-law running
 - It is the 3-gluon vertex which decides what is behavior that the mass will develop!
- A effective charge (process-idependent) which displays:
 - Asympotic freedom in the UV
 - Infrared fixed point at IR! (Freezes at a finite value!)

イロト イヨト イヨト イヨト 三日

Outlook

- Sctruture of the three-gluon vertex;
- Ghost effects;
- Lattice studies and phenomelogical applications;

イロト イヨト イヨト イヨト

æ

- A. C. Aguilar and J. Papavassiliou, In preparation
- A. C. Aguilar and J. Papavassiliou,
 "Gluon mass generation in the PT-BFM scheme," JHEP 0612, 012 (2006) [arXiv:hep-ph/0610040].
- A. C. Aguilar and J. Papavassiliou,
 "On dynamical gluon mass generation," Eur. Phys. J. A 31, 742 (2007)[arXiv:0704.2308 [hep-ph]].
- J. M. Cornwall,
 "Dynamical Mass Generation In Continuum QCD," Phys. Rev. D 26 (1982) 1453.

イロト イポト イヨト イヨト