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We start with QCD Lagrangian with three massless quarks
(u, d, s) with number of colours N = 3
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Bogolubov approach: N.N. Bogolubov. Physica Suppl.,
26, 1 (1960); N.N. Bogolubov, Quasi-averages in prob-
lems of statistical mechanics. Preprint JINR D-781,
(Dubna: JINR, 1961).

Application to QFT: B.A.A., Theor. Math. Phys., 140,
1205 (2004).

Application to QCD: B.A.A., Phys. Atom. Nucl., 69,
1588 (2006); B.A.A., M.K. Volkov and 1.V. Zaitsev, Int.
Journ. Mod. Phys. A, 21, 5721 (2006).

Results of calculation of hadron low-energy parameters:
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I's, < qg > are quite consistent.



Bogolubov procedure add — subtract.
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Here Fy . = Oudy — 0y Au, S+ fape F2, FL, FS, means

non-local vertex in the momentum space
21 G fape (9uv(aopk — ppak) + gup(kupg — qupk) +
9pu(Pvak — kupq) + qukupp — kupuqp) X
XF(p,q,k)o(p+q+k); (4)



F(p,q, k) is a form-factor and p, u; q,v; k, p —incoming
momenta and Lorentz indices of gluons (four-gluon, five-
gluon and six-gluon vertices are present also).

(2) — new free Lagrangian Lg, (3) — new interaction
Lagrangian L;,:. Then compensation conditions will con-
sist in demand of full connected tree-gluon vertices, follow-
ing from Lagrangian L, to be zero. This demand gives a
non-linear equation for form-tactor F'.

These equations according to terminology of works by
Bogolubov are called compensation equations. In a
study of these equations it is always evident the existence
of a perturbative trivial solution (in our case G = 0),
but, in general, a non-perturbative non-trivial solution
may also exist. Just the quest of a non-trivial solution



inspires the main interest in such problems. The goal of
a study is a quest of an adequate approach, the first non-
perturbative approximation of which describes the main
features of the problem.

1) In compensation equation we restrict ourselves by terms
with loop numbers 0, 1.

2) In expressions thus obtained we perform a procedure
of linearizing, which leads to linear integral equations.

3) We integrate by angular variables of the 4-dimensional
FEuclidean space.

4) We look for a solution with the following simple depen-
dence on all three variables

F(p1, p2, p3) = F(
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We plan to take into account corrections to the first
approximation in the forthcoming study.
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Here 2z = p* and y = ¢, where ¢ is an Integration mo-
mentum. We introduce here an effective cut-oftf Y, which
limited an infrared region and consider the equation at
interval [0, Y| under condition

FY)=0, G=0 forp>>Y. (7)

We shall solve equation (6) by iterations. That is we ex-
pand the last lines of (6) in powers of x and take at first



only constant term.
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Here
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1s a Meijer function.
Boundary conditions
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Conditions (7, 11) fulfil for z5 = oo, C; = 0, C2 = 0.
However with these parameters the first integral in (8)
diverges and we have no consistent solution. As the next
step we take into account terms proportional to /2.
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Condition F'(0) = 1 leads to the following relation

(15)

(16)
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We have also condition
F(zp) = 0;
The conditions define values of parameters
g(Y) = 2.55779; 2z = ?Z;Z;Q = 1.915838;
C; = 0.06172743; (9 = —0.1640803.

(17)

We would draw attention to the fixed value of parameter
2p. The solution exists only for this value and it plays the
role of eigenvalue. As a matter of fact from the beginning
the existence of such eigenvalue is by no means evident.



We use Schwinger-Dyson equation for gluon polariza-
tion operator to obtain a contribution of additional ef-
fective vertex to the running QCD coupling constant .
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So we have modified one-loop expression for as(p2)
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as(z) = 27m8(p0) . (20)
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[t is remarkable that function Il(z) at z = Y (2 = zp)
turns to be very small, almost zero. We just expect this
quantity to be zero exactly. So this property of the approx-



imated polarization operator indicates the consistency ot
the procedure being used. Namely we normalize ag(p?)
at point pg, which correspond to our cut-oftf Y. Perform-
ing the well-known transformations in expression (20) we
have for u < uyg
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For u > ug we use the perturbative one-loop expression
R X

by In(u)
The self-consistent result for expressions (21, 22) with ac-
count of previous relations is unique and reads as follows

20 = 191584 wuy = 14.6133; oy = 0.52062:
Oy = 0.06172743: Cy = — 0.1640803 . (23)

Ols(u) (22>

Behavior of a (21) with u = Q°/Agep for Agep =
0.2GeV and 0.05GeV < ) < 1GeV is presented at
Fig. 3.

The behaviour with maximum at () ~ 0.6 GeV and

maximal value a’j'*" ~ (.55 agrees to calculations in work

M. Baldicchi, A.V. Nesterenko, G.M. Prosperi et al., arXiv,
0705.1695 |hep-ph].



Qualitately the result also corresponds to lattice calcu-
lations in work E.-M Ilgentfritz, M. Muller-Preussker, A.
Sternbeck and A. Schiller, arXiv, hep-lat/0601027.

See also discussion in paper D.V. Shirkov, Eur. Phys. J.
C, 22, 331 (2001).

Note, that we begin plot at Fig.3 starting from () =
0.05 GeV', because ag(u) has a pole at very small u, which
1s analogous to the well-known perturbative pole at u =
1. Now this pole is shifted to the far infrared region. One
may deal with it using the method proposed in work {D.V.
Shirkov and I.L. Solovtsov, Phys. Rev. Lett., 79, 1209
(1997).} and subtract from (21)

47 .
bo D (v — uqp)

ugy = 0.005769: D = 170.1594 .
(24)



This procedure practically does not change the result pre-
sented at Fig.3 in the denoted interval of (). For compar-
ison we present at Fig. 4 the modified ag(Q)) for interval
0.01GeV < @ < 1GeV. Value of ag(Q)) at zero reads
ag(0) = 1.4205. All values are now expressed in terms of
Agcp- Emphasize, that there is no additional parameters
to describe the non-perturbative infrared region.

5.497571

G = (25)

2
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We calculate non-perturbative vacuum average of the third

power 1n gluon field, which 1s immediately connected with
our results. We have
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The mean non-perturbative value for a turns to be here
around 0.5. For this value results for low-energy hadron
parameters from works {B.A. A., Phys. Atom. Nucl., 69,
1588 (2006); B.A.A., M.K. Volkov and I.V. Zaitsev, Int.
Journ. Mod. Phys. A, 21, 5721 (2006).}

mpy = 134 MeV ; fr = 93 MeV ;
mg = 460 MeV ;: I'y = 580 MeV ;
<qg>= —(230MeV)?; (my = 19 MeV);



To conclude we would state, that method by Bogolubov
being applied to non-perturbative ag proves its efficiency
even in the first approximation, which is considered here.
Bearing in mind also results on application of the ap-
proach to low-energy hadron physics we would express a
hope, that in this way we could obtain the adequate tool
to deal non-perturbative effects in QCD and, maybe, in
other problems.

{hep-ph/0703237}
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