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Introduction




Light cone formalism

The amplitude is divided into two parts:
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Light cone formalism can be considered as an alternative to NRQCD




‘ Advantages

1. Light cone formalism resums relativistic corrections,
if DA is known

DA resums leading logarithmic radiative correction

to the amplitude -« Log(©Q)

M=[dEHE) #(£.Q)  E=x%—X,

DA is key ingredient of light cone formalism.




‘ Definitions of leading twist DA
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‘ Evolution of DA

DA can be parameterized through the coefficients of conformal expansion a,, :
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‘DA of nonrelativistic system
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Properties: 1) : : : i

1. The width of DA s &% ~ v° 1.25 : :
2. The motion in Region I (£* ~ v?) is nonerlativistic . | |
0.75 | I

3. The motion in the end point Region Il (£* ~1) . | |
IS relativistic 0.95 : :
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At leading order approximation in relative velocity

9o (5) = 4L(S) = 4 (S) = P(S)




The study of
charmonium distribution amplitudes




Different approaches to the study of DA

1. Functional approach
- Bethe-Salpeter equation

2. Operator approach
- NRQCD
- QCD sum rules




‘ Potential models

Brodsky-Huang-Lepage procedure:

O Solve Schrodinger equation
~2
d Get wave function in momentum space: v (k)

d Make the substitution in the wave function:

, -
M, M2 = M:+k:
, 0
X X,

Q Integrate over transverse momentum:

ki —> ki, k, > (x,-x,)

JE )~ [k p(ER),  u~M,




‘The moments within Potential Models

<& >, =[dEE (& p)

= The larger the moment, the
larger the contribution of
relativistic motion

= Only few moment can be
calculated

Higher moments contain information about relativistic motion in quarkonium




Property of DA
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one zero in y (K?)

U

two extremums in @ (&)

DA of nS state has 2n+1 extremums




'The moments within NRQCD

LEADING ORDER APPROXIMATION IN RELATIVE VELOCITY
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Derivation of the formula
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'The moments within NRQCD

The values of <v"> were calculated in paper

G. Bodwin, Phys.Rev.D74:014014,206

<V >=y"

The constant 7 can be expressed through the <vé>

For1Sstates <v? >=0.25+0.08
For 2Sstates < v? >=0.65+0.42




‘The model for DA within NRQCD

LEADING ORDER APPROXIMATON IN RELATIVE VELOCITY
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b(E) = 0(-1E)
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At leading order approximation ) is the only parameter




The model for DA within QCD sum rules

Advantage:
The results are free from the uncertainty due to the relativistic corrections

Disadvantage:
The results are sensitive to the uncertainties in QCD sum rules parameters:

m.,, <G?*>, S,

C

QCD sum rules is the most accurate approach




‘The results of the calculation

The results for 1S states

{(£™y | Buchmuller-Tye | Cornell NRQCD QCD
model model sum rules
n =2 0.056 0.084 0.075 £0.011 0.070 £ 0.007
n =4 0.020 0.019 0.010 & 0.003 0.012 4 0.002
n =6 0.0066 0.0066 |0.0017 4 0.0007 |0.0032 4+ 0.0009

The results for 2S states

(€™ | Buchmuller-Tye | Cornell NRQCD QCD
model model sum rules
n =2 0.16 0.16 0.22+0.14 | 0.18 T323
n =4 0.042 0.046 |0.085 +£0.110|0.051 2331
n==6 0.015 0.016 |0.039 40.077|0.017 2-01¢




'The models of DAs

1S states

P& p~m,) ~ (1-&7) Exp(- 1@2}

£=38+0.7,

characteristic velocity v* ~ 1 025

2S states

(& pu~m)~ A=) (a+E&7) Exp(-l_’i;zj
a=0.0372, p=2522,

characteritic velocityv® ~ 1 04




The properties of
distribution amplitudes




'Relativistic tail

O At 4, ~m_ DA is suppressed P~ 7me)

in the region | & |> 0.75

O This suppression can be achieved if
there is fine tuning of a,
HE, 1) ~ (1_52)(23-”(/1) G:/z(éj)j -1 -0.75-0.5-0.25 0.25 0.5 0.75 1 &
n P&, pu = 10GeV)
1.4
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O Fine tuning is broken at , >m_ 1
due to evolution -8
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The violation of NRQCD scaling rules

At larger scales the fine tuning of . | 9
the coefficients g, is broken (%) = = +aa(n) gz ~ v?
and , 3 3 9 4
NRQCD scaling rules are violated (e = g5 T aal)ge Tas(u)m ~ v
() = o+ 020 e+ 4 ) s+ ) o o

NRQCD velocity scaling rules are violated in hard processes




‘I_mpr'ovemem“ of the model for DA

The evolution of the second moment

1 12
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The coefficients a, (x) decreasesas x increases

U

Theerrorin < &2 > decreasesas u increases

1S state

<&*>, . =0.070 +0.007
2 S state

<&f> . =0.18"77

< &% >, ey = 0.123 +0.005

2 _ 10.3
<6 > ipcev = 0.19 7,

The accuracy of the model for DA becomes better at larger scales




‘ Models for 2S states

Maodel 1

Model 11

Uy

-1 0.5 1 &
a =0 f = 2.5
< E2>=0.21
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) 1
relative  momentum ~ & p ~ ?p

< £7% >=
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B = 2.5
0.12
0.031

relative momentum

At leading order approximation of NRQCD
the relative momentum of quark-antiquark pair is zero




Double charmonium production
at B-factories




The study of the process ee¢ —J/¥7,

Experimental results

o(e’e” > J/¥n.)xBr(n, >2charged) =25.6+£2.8+3.4fb BELLE
o(e'e” > J/W¥n,)xBr(y, >2charged) = 17.6+2.8"° fb BABAR

Leading order NRQCD predictions

oc(e’e >J/¥Yn,)=3.78+1.261b Braaten and Lee, Phys.Rev. D67
c(e'ee >J/¥Yn)= 55 b Liuetal., Phys. Lett. B557

How It Is possible to get agreement
between the theory and the experiment?




Relativistic and radiative corrections

NRQCD formalism

Relativistic corrections
K=2.1 Bodwin etal., hep-ph/0611002

K=1.7 He etal., Phys.Rev.D75

One loop radiative corrections
K=1.96 Zhangetal.,, Phys. Rev. Lett. 96

oc(ete” > J/W¥n,)=175+5.71b
20 fb

oe'e" >J/¥n,)=

Bodwin et al., hep - ph/061102
Phys. Rev. D75

He et al.,

Light cone formalism

Relativistic corrections

K=1.8-2.1

Leading logarithmic radiative corrections
K=19-21

oe’'e >J/V¥n,)=25f

The amplitude was derived in paper Bondar, Chernyak, Phys.Lett. B612




‘ The other processes

Preliminary results

HiH> OBaBar X Br,—charged>2(f0) |0Belle X Br,—charged>2(fb) | 0Light Cone(fb) |enrRQCD(fD)
»(15)n:(19) 17.6 £2.875° 25.6 + 2.8 4+ 3.4 2511 3.78 +1.26
(28)n.(18) — 16.3 £4.6 +3.9 18715 1.57 £0.52

(18)7:(289) 16.4+3.773% 16.5+3.0+24 28715 1.57 £0.52
¥(28)7:(2S5) — 16.0£5.14+3.8 17438 0.65 4+ 0.22

The uncertainties in light cone predictions are due to the uncertainties in DAs
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