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We study uncertainties of the ground-state parameters obtained with SVZ sum rules, making
use of the harmonic-oscillator potential model. In this case, one knows the exact solution for the
polarization operator Π(µ), which allows one to obtain (i) OPE to any order (ii) the spectrum of
states.

We apply the sum-rule machinery for extracting the parameters of the ground state, and check
the accuracy of the extracted values by comparing with the exact known values. In this way we
probe the accuracy of the method.
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A QCD sum-rule calculation of hadron parameters involves two steps:

(i) one calculates the operator product expansion (OPE) series for a relevant correlator,

(ii) one extracts the parameters of the ground state by a numerical procedure.

The first step lies fully within QCD and allows (at least in principle) a rigorous treatment of the
uncertainties.

The second step lies beyond QCD: even if several terms of the OPE for the correlator are known
precisely, the hadronic parameters might be extracted by a sum rule only within some error, which
may be treated as a systematic error of the method. For many applications of sum rules, espe-
cially in flavor physics, one needs rigorous error estimatesof the theoretical results for comparing
theoretical predictions with the experimental data.

We study the uncertainties of the determination of the ground-state parameters from SVZ sum
rules, making use of the harmonic-oscillator potential model as an example. In this case, one
knows the exact solution for the polarization operatorΠ(µ), which allows one to obtain (i) OPE to
any order and (ii) the spectrum of states.

We apply the sum-rule machinery for extracting parameters of the ground state and check the
accuracy of the extracted values by comparing with the exactknown results. In this way we
probe the accuracy of the method.
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MODEL:

H = H0 + V(r), H0 = ~p2/2m, V(r) = mω2~r2

2 , G(E) = (H − E)−1.

Polarization operator Π(E) defined through the full Green function G(E):

Π(E) = (2π/m)3/2 〈~r f = 0|G(E)|~ri = 0〉,

The Borel transformedΠ(µ) is the evolution operator in imaginary time 1/µ:

Π(µ) = (2π/m)3/2 〈~r f = 0| exp(−H/µ)|~ri = 0〉 =
(

ω

sinh(ω/µ)

)3/2

.

OPE:

Expanding in inverse powers ofµ gives the OPE series forΠ(µ) to any order:

ΠOPE(µ) ≡ Π0(µ) + Π1(µ) + Π2(µ) + · · · = µ3/2

[

1− ω
2

4µ2
+

19
480
ω4

µ4
− 631

120960
ω6

µ6
+ · · ·

]

.

Each term may be calculated from the perturbative expansionof G(E):

++ +

(E) (E)Π
0

Π (E)1 Π2

with e.g.Π0(µ) =
∞
∫

0

dzρ0(z) exp(−z/µ), ρ0(z) = 2√
π

√
z.
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The “phenomenological” representation forΠ(µ) - in the basis of hadron eigenstates:

Π(µ) =
∞
∑

n=0

Rn exp(−En/µ),

En - energy of then-th bound state,Rn = (2π/m)3/2|Ψn(~r = 0)|2.

E0 =
3
2ω, R0 = 2

√
2ω3/2, E1 =

7
2ω, R1 = 3

√
2ω3/2.

How to calculateE0 and R0 from Π(µ) known numerically?
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SUM RULE

The equality of the correlator calculated in the “quark” basis and in the hadron basis:

R0e−E0/µ +

∞
∫

zcont

dzρphen(z)e−z/µ
=

∞
∫

0

dzρ0(z)e−z/µ
+ µ3/2

[

− ω
2

4µ2
+

19
480
ω4

µ4
− 631

120960
ω6

µ6
+ · · ·

]

.

Effective continuum thresholdzeff(µ) (cannot be aµ-independent constant!)

Πcont(µ) =

∞
∫

zcont

dz ρphen(z) exp(−z/µ) =

∞
∫

zeff(µ)

dz ρ0(z) exp(−z/µ).

Rewrite sum rule in the form

R0 exp(−E0/µ) = Π(µ, zeff(µ)) ≡
2
√
π

zeff(µ)
∫

0

dz
√

z exp(−z/µ) + µ3/2

[

− ω
2

4µ2
+

19
480
ω4

µ4
− 631

120960
ω6

µ6
+ · · ·

]

.

The cut correlator Π(µ, zeff(µ)) satisfies the equation:

E(µ) ≡ − d
d(1/µ)

logΠ(µ, zeff(µ)) = E0.

The cut correlator governs the extraction of the ground-state parameters.
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R0 exp(−E0/µ) = 2√
π

zeff(µ)
∫

0

dz
√

z exp(−z/µ) + µ3/2
[

− ω2

4µ2
+

19
480
ω4

µ4
− 631

120960
ω6

µ6
+ · · ·

]

.

Restrict zeff(µ) - expand both sides nearω/µ = 0: l.h.s. contains only integer powers ofω/µ, power
corrections on the r.h.s. contain only odd powers of

√

ω/µ. Therefore zeff(µ) cannot be constant:

zeff(µ) = ω

[

z̄0 + z̄1

√

ω

µ
+ z̄2
ω

µ
+ · · ·

]

.

Inserting this series in the SR above:

R0 =
4

3
√
π

z̄3/2
0 ω

3/2, z̄1 =

√
π

8
√

z̄0
, R0E0 =

2

5
√
π

z̄5/2
0 ω

5/2 − ω
5/2

2
√
π

(z̄2
1 + 4

√
z̄0z̄2).

For any E0 and R0 within a broad range of values there exists a functionzeff(µ, E0,R0)
which solves the sum ruleexactly.

Setting E0 =
3
2ω and R0 = 2

√
2ω3/2, the equations above yield the following solution for the exact

effective continuum threshold in the HO model: z̄0 = 2.418, z̄1 = 0.142, z̄2 = −0.081, z̄4 = 0.34, etc.
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Setting E0 equal to its exact value does not help much in extractingR0:
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As might be expected, in a limited range ofµ OPE alone cannot say anything about ground-state
parameters. What really matters is the continuum contribution, i.e. zeff(µ)

Without constraints on the effective continuum threshold
the results obtained from OPE in a limited range ofµ are not restrictive.
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In several important problems, the contribution of hadron continuum is not known:

- Calculation of heavy hadron observables

- Properties of exotic hadrons

Still, QCD sum rules are being extensively applied to these problems, and give predictions.

How can these predictions be obtained at all?

How reliable and accurate are these estimates?



9

A CLOSER LOOK AT THE STANDARD PROCEDURE:

Let us work with 3 power corrections: then in the regionω/µ < 1.1 one has

ΠOPE(µ) − Π(µ)
Π(µ)

≤ 0.5%

We know the ground-state parameters, so we fix0.7 < ω/µ, where the ground state gives more
than 60% of the full correlator.

So the ”fiducial” range is 0.7 < ω/µ < 1.1.

We shall seek the (approximate) solution to the equation

R exp(−E/µ) +

∞
∫

zeff(µ)

dzρ0(z) exp(−z/µ) = ΠOPE(µ)

in the range0.7 < ω/µ < 1.1.

We set E = E0 =
3
2ω and denote asR the values extracted from the sum rule. The notation

R0 = 2
√

2ω is reserved for the known exact value.
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ANZATS: zeff(µ) = zc = const.

Now, one needs to impose a criterion for fixingzc: e.g. one calculates

E(µ, zc) = −
d

d(1/µ)
logΠ(x, zc).

This now depends onµ due to approximating zeff(µ) with a constant. Then, one determinesµ0 and
zc as the solution to the system of equations

E(µ0, zc) = E0,
∂

∂µ
E(µ, zc)|µ=µ0 = 0,
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ANZATS: zeff(µ) = zc = const.

Now, one needs to impose a criterion for fixingzc: e.g. one calculates

E(µ, zc) = −
d

d(1/µ)
logΠ(x, zc).

This now depends onµ due to approximating zeff(µ) with a constant. Then, one determinesµ0 and
zc as the solution to the system of equations

E(µ0, zc) = E0,
∂

∂µ
E(µ, zc)|µ=µ0 = 0,
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1. A very good description ofΠ(µ) (less than 1% deviation in the full range0.7 ≤ µ/ω ≤ 1.1)

2. The stability of E(µ, zc) againstµ is also very satisfactory≤ 1%.

3. The function R(µ, zc) is extremely stable in the region0.7 ≤ ω/µ ≤ 1.1.

4. In the model under discussion one obtains a rather good central-value estimateR/R0 = 0.96.

5. However, a dangerous point:

the description ofΠ(µ) with better than 1% accuracy,

the deviation of theE(µ, zc) from E0 at the level of only 1%,

and extreme stability of R(µ) in the fiducial range

nevertheless leads to a 4% error in the extracted value ofR!

How to guess these 4%? As seen from the plot, it would beincorrect to estimate the error, e.g.,
from the range covered byR when varying the Borel parameterµ within the fiducial interval.

In the model under consideration the sum rules give good estimates for the parameterR0. This
might be due to the following specific features of the model:

(i) a large gap between the ground state and the first excitation that contributes to the sum rule;

(ii) an almost constant exact effective continuum threshold in a wide range ofµ.

Whether or not the same good accuracy may be achieved in QCD, where the features mentioned
above are absent, is not obvious.

Even in this simple model, one cannot control the accuracy ofthe extracted value ofR.
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CONCLUSIONS

1. The knowledge of the correlator in a limited range of the Borel parameter µ is not sufficient for
an extraction of the ground-state parameters with a controlled accuracy, even if the ground-state
mass is known precisely: Rather different models for the correlator in the form ground state plus
an effective continuum lead to the same correlator.

2. A sum-rule extraction of the ground-state parameters without knowing the hadron continuum
suffers from uncontrolled systematic uncertainties (not to be confused with the uncertainties re-
lated to errors in quark masses,αs, renormalization point, condensates, etc; the latter errors are
usually properly taken into account).

3. A typical sum-rule analysis of HEAVY-MESON observables belongs to this class of problems:
in this case, the hadron continuum is not known and is modeledby an effective continuum thresh-
old treated as a fit parameter.

In this case one may perhaps obtain quite reasonable centralvalues, but no estimates
of systematic errors for hadron parameters obtained with sum rules can be given.

An important notice: the independence of the extracted hadron parameters from the Borel mass
does not guarantee the extraction of their true values.

The impossibility to control the systematic uncertaintiesis an obstacle for using the results from
QCD sum rules for precision physics, such as electroweak physics.


