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We study uncertainties of the ground-state parameters obtaed with SVZ sum rules, making
use of the harmonic-oscillator potential model. In this cas, one knows the exact solution for the
polarization operator Il(«), which allows one to obtain (i) OPE to any order (ii) the speatum of
states.

We apply the sum-rule machinery for extracting the parametes of the ground state, and check
the accuracy of the extracted values by comparing with the eact known values. In this way we
probe the accuracy of the method.
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A QCD sum-rule calculation of hadron parameters involves tvo steps:
(i) one calculates the operator product expansion (OPE) sars for a relevant correlator,
(i) one extracts the parameters of the ground state by a nunré&cal procedure.

The first step lies fully within QCD and allows (at least in principle) a rigorous treatment of the
uncertainties.

The second step lies beyond QCD: even if several terms of theR& for the correlator are known
precisely, the hadronic parameters might be extracted by awan rule only within some error, which
may be treated as a systematic error of the method. For many gpications of sum rules, espe-
cially in flavor physics, one needs rigorous error estimatesf the theoretical results for comparing
theoretical predictions with the experimental data.

We study the uncertainties of the determination of the grouml-state parameters from SVZ sum
rules, making use of the harmonic-oscillator potential mo@l as an example. In this case, one
knows the exact solution for the polarization operatorII(u), which allows one to obtain (i) OPE to
any order and (ii) the spectrum of states.

We apply the sum-rule machinery for extracting parameters é the ground state and check the
accuracy of the extracted values by comparing with the exacknown results. In this way we
probe the accuracy of the method.



MODEL:

H=Ho+V(r), Ho=p¥2m V() =", G(E)=(H-E)™
Polarization operator I1(E) defined through the full Green function G(E):
I(E) = (2r/m)*?(Ft = OG(E)IF; = 0),

The Borel transformed I1(u) is the evolution operator in imaginary time 1/u:

3/2
_ 3/2 /o, _ 2 5O\ w
M) = (2r/m)P2(7; = 0 expl H/u)|r.-o>-(smh(w /ﬂ)) |

OPE:
Expanding in inverse powers ofu gives the OPE series folll(u) to any order:

2 19 631 w°
I = o(u) + My(u) + M) + - -+ = p¥2 |1 = == B
ope(u) = Ho(u) + Ty (p) + Ma(p) + K l 4442 " 480u*  12096Qu° '

Each term may be calculated from the perturbative expansiorof G(E):

,(E) M,(E) M,(E)

with e.9. Tlo(u) = [ dzpo@) exp(zi). pold) = 2 V2
0
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The “phenomenological” representation forIl(u) - in the basis of hadron eigenstates:
() = ) Roexp(-En/p),
n=0

E, - energy of then-th bound state,R, = (27/m)%2|¥(F = 0)>.

Eo = %w, Ro = 2\/§w3/2, E]_ = %w, R]_ = 3\/§w3/2.

How to calculate Eg and Ry from I1(u«) known numerically?
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Black - exactII(u); Red - OPE with 4 power corrections, Green - OPE with 100 powecorrections.



SUM RULE
The equality of the correlator calculated in the “quark” basis and in the hadron basis:

w2 N 19 w? 631 a)6+
4u?  480u* 120960Qu°

Roe—Eo/#_|_ fdzppher(z)e—z/,u — fdzpo(z)e—z/u+ﬂ3/2
0

Zcont

Effective continuum thresholdzs (1) (cannot be au-independent constant!)

(69} (6o}

Meondt) = f dZpphed?) €XPE2/) = f dzpo(2) exp(-2/).

Zcont Zegr (1)

Rewrite sum rule in the form

Zer (1)
w? 19 w? 631 w°

3 ~ _ 2 2 32| _ _
Roexp(-Eo/j) = 1. Zen(0)) = —= f dzvzexp(-z/u) + l 42 " 48044 ~ 1209608

0

The cut correlator IT(u, z«(1)) satisfies the equation:

d
() = ~ g7 109 e 2o ) = Eo

The cut correlator governs the extraction of the ground-stée parameters.

+...



Zeir (1)
2 4 6
Roexp(-Eo/p) = = | dzvzexp(-z/u) + 2 [—ﬁ + 2508 ~ 200505 t ] :
0

Restrict z(u) - expand both sides neaw/u = 0O: |.h.s. contains only integer powers otv/u, power
corrections on the r.h.s. contain only odd powers ofy/w/u. Therefore z(u) cannot be constant:

zal) = o[+ 7,2 4 B2 4
uou

Inserting this series in the SR above:
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_ 2 =52 52 ® —-
RoEo = 5\/7_;3 w (Z + 4V2o20).

For any Eg and Ry within a broad range of values there exists a functiorzss(u, Eo, Ro)
which solves the sum rulesxactly.

Setting Eg = %w and Ry = 2v2w%2, the equations above yield the following solution for the exct
effective continuum threshold in the HO model:z; = 2.418 7z; = 0.142 z, = —0.081, z; = 0.34, etc.



Setting Eg equal to its exact value does not help much in extractingy:
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As might be expected, in a limited range of: OPE alone cannot say anything about ground-state
parameters. What really matters is the continuum contribution, i.e. Z(u)

Without constraints on the effective continuum threshold
the results obtained from OPE in a limited range ofu are not restrictive.
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In several important problems, the contribution of hadron continuum is not known:

- Calculation of heavy hadron observables
- Properties of exotic hadrons

Still, QCD sum rules are being extensively applied to theserpblems, and give predictions.

How can these predictions be obtained at all?

How reliable and accurate are these estimates?



A CLOSER LOOK AT THE STANDARD PROCEDURE:

Let us work with 3 power corrections: then in the regionw/u < 1.1 one has

Hopg(u) — ()
T(w)

We know the ground-state parameters, so we fi¥.7 < w/u, where the ground state gives more
than 60% of the full correlator.

< 0.5%

So the "fiducial” range is 0.7 < w/u < 1.1.

We shall seek the (approximate) solution to the equation

RexpCE/u) + f d200(2) eXp-2/11) = Tope(1)
Zegr (1)
in the range 0.7 < w/u < 1.1.

We setE = Ey = %w and denote asR the values extracted from the sum rule. The notation
Ro = 2 V2w is reserved for the known exact value.
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ANZATS: Zg(u) = Z. = const
Now, one needs to impose a criterion for fixing.. e.g. one calculates

d
E(/.l, ZC) = _d(l//.l) Iog H(X’ ZC)

This now depends onu due to approximating z.(u) with a constant. Then, one determinegg and
Z: as the solution to the system of equations

0
E(/JO’ ZC) = EO’ %E(ﬂ’ ZC)l,u:,uo = O’

E(u) /Eo R(u) /Ro
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ANZATS: Zg(u) = Z. = const

Now, one needs to impose a criterion for fixing.. e.g. one calculates

d
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This now depends onu due to approximating z.(u) with a constant. Then, one determinegg and
Z: as the solution to the system of equations

0
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1. A very good description ofl1(u) (less than 1% deviation in the full range0.7 < u/w < 1.1)
2. The stability of E(u, z;) againstu is also very satisfactory< 1%.
3. The function R(u, z;) is extremely stable in the region0.7 < w/u < 1.1.
4. In the model under discussion one obtains a rather good cémal-value estimateR/Ry = 0.96.
5. However, a dangerous point:
the description of IT(u) with better than 1% accuracy,
the deviation of the E(u, z.) from Eg at the level of only 1%,
and extreme stability of R(u) in the fiducial range
nevertheless leads to a 4% error in the extracted value dR!

How to guess these 4%7? As seen from the plot, it would biecorrect to estimate the error, e.g.,
from the range covered byR when varying the Borel parameteru within the fiducial interval.

In the model under consideration the sum rules give good eshates for the parameterR,. This
might be due to the following specific features of the model:

(i) a large gap between the ground state and the first excitadin that contributes to the sum rule;
(i) an almost constant exact &ective continuum threshold in a wide range ofu.

Whether or not the same good accuracy may be achieved in QCD,here the features mentioned
above are absent, is not obvious.

Even in this simple model, one cannot control the accuracy dhe extracted value ofR.
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CONCLUSIONS

1. The knowledge of the correlator in a limited range of the Boel parameter u is not sufficient for
an extraction of the ground-state parameters with a contrdled accuracy, even if the ground-state
mass is known precisely: Rather diferent models for the correlator in the form ground state plus
an dfective continuum lead to the same correlator.

2. A sum-rule extraction of the ground-state parameters wihout knowing the hadron continuum
suffers from uncontrolled systematic uncertainties (not to be onfused with the uncertainties re-
lated to errors in quark masses,as, renormalization point, condensates, etc; the latter erros are
usually properly taken into account).

3. A typical sum-rule analysis of HEAVY-MESON observables lelongs to this class of problems:
in this case, the hadron continuum is not known and is modeletly an effective continuum thresh-
old treated as a fit parameter.

In this case one may perhaps obtain quite reasonable centrablues, but no estimates
of systematic errors for hadron parameters obtained with sun rules can be given.

An important notice: the independence of the extracted hadon parameters from the Borel mass
does not guarantee the extraction of their true values.

The impossibility to control the systematic uncertaintiess an obstacle for using the results from
QCD sum rules for precision physics, such as electroweak phics.



