# QCD@Work 2007 - Martina Franca The cusp anomaly, integrability and AdS/CFT 

Antonello Scardicchio

Department of Physics and
Center for Theoretical Physics, Princeton University Princeton, USA

Joint work with M.Benna, S.Benvenuti and I.Klebanov

## Plan of the talk:

- The cusp anomaly: a very important quantity in QCD and gauge theories
- Old and new results in integrability
- Strong coupling and string theory


## The cusp anomaly appears everywhere...

- Renormalization of Wilson loops
- Infrared divergences in perturbative QCD and HQET
- Scattering of gluons (planar limit)


## Renormalization of Wilson loops



This quantity is UV divergent

For example in QED, after a gaussian integral

$$
\begin{gathered}
W(C)=e^{-\frac{e^{2}}{2} \int d x_{\mu} d y_{\nu} \frac{g_{\mu \nu}}{(x-y)^{2}+a^{2}}} \\
\text { point splitting regulator }
\end{gathered}
$$

## Renormalization of Wilson loops

$$
\begin{aligned}
& \text { in QED } \\
& W(C)=e^{-\frac{c^{2}}{2} \int d x_{\mu} d y_{\nu} \frac{g_{\mu \nu}}{(x-y)^{2}+a^{2}}} \\
& \text { Notice that } \\
& \int d x_{\mu} d y_{\nu} \frac{g_{\mu \nu}}{(x-y)^{2}+a^{2}} \sim \frac{L(C)}{a}+\text { finite }
\end{aligned}
$$

The divergence structure is the same in all gauge theories (including QCD and SUSY theories)

## Renormalization of Wilson loops

in a generic gauge theory

$$
W(C)=\langle 0| P e^{i g \int_{C} d x_{\mu} A^{\mu}}|0\rangle \sim Z_{C} f\left(g_{\mathrm{ren}}, C\right)
$$

$$
Z_{C}=e^{-\gamma L / a}
$$

This renormalization is enough (Polyakov) unless...

## Renormalization of Wilson loops (with

 cusps)

$$
\ln Z_{C} \simeq \gamma L / a+\Gamma_{\mathrm{cusp}}(g, \theta) \ln 1 / a+\text { finite }
$$

## the cusp anomalous dimension

 (aka cusp anomaly)$$
\Gamma_{\text {cusp }}(g, \theta) \simeq \frac{\alpha_{S} N_{c}}{2 \pi}(\theta \cot \theta-1)+\mathcal{O}\left(\alpha_{S}^{2} N_{c}^{2}\right)
$$

$$
\Gamma_{\text {cusp }}(g, \theta) \rightarrow f(g) \theta
$$

when $\theta \rightarrow \infty \quad$ in Minkovsky space

# Who cares about the cusp anomaly? The Altarelli-Parisi equation 



Parton picture of the hadrons

$$
q\left(x, \ln Q^{2} / Q_{0}^{2}\right)
$$

Parton distribution function


Who cares about the cusp anomaly? The Altarelli-Parisi equation

$$
\begin{array}{ll}
P_{q q}(z)=a \delta(1-z)+\frac{f(g)}{(1-z)_{+}}+\ldots & \text { where } \\
& \int_{0}^{1} d z A(z) \frac{1}{(1-z)_{+}} \equiv \int d z \frac{A(z)-A(1)}{1-z}
\end{array}
$$

So this is a measurable quantity which defines the behavior of soft gluons (Korchensky, Radyyshkin, Marchesani, ete.)

It also determines the behavior of MHV scattering of gluons (in the planar limit) (sterman, Bern, Kosover, Dixon, Alday and Maldacena)

## How do we calculate the $f(g)$ ?

- Perturbation series in g (shut up and calculate approach)
- or ... any better idea?


## Integrability in planar, N=4 SYM

- $N=4$ is the maximally supersymmetric gauge theory in 4 dimensions
- It is a conformal theory
- Perturbatively it looks a lot like QCD although the spectrum is quite different
- It is most probably INTEGRABLE (namely it looks a lot like the Heisenberg model or any other integrable model you have in mind)


## Cusp anomaly in $\mathrm{N}=4$ SYM

The cusp anomaly, its interpretation and properties extend smoothly to $\mathrm{N}=4$ SYM

Understanding them in $\mathrm{N}=4$ can lead to a deeper understanding of the same quantities in QCD (unlike for example the spectrum and other low-energy observables)

## Leading twist long operators

Take some colored scalar field $\Phi$
$\mathcal{O}_{L}=\operatorname{Tr}\left(\Phi D^{L} \Phi\right) \quad$ where $\quad L \gg 1$
Under operator mixing it mixes with

$$
\mathcal{O}_{L, m}=\operatorname{Tr}\left(D^{m} \Phi D^{L-m} \Phi\right)
$$

By diagonalizing the mixing matrix we find

$$
\Delta=L+f(g) \log L+\ldots
$$

again the cusp anomaly!

## Spin chains and long operators

Operators and states

$$
\begin{aligned}
& X^{L} \equiv|\downarrow, \downarrow, \ldots, \downarrow\rangle \\
& X^{m} Y X^{L-m-1} \equiv|\downarrow, \downarrow, \ldots, \uparrow, \downarrow, \ldots, \downarrow\rangle
\end{aligned}
$$



Find the hamiltonian which reproduces mixing at a given order in a loop expansion

Find the eigenvalues of this hamiltonian
This gives the anomalous dimensions
(Minahan, Zarembo, Beisert, Eden, Staudacher and many others)

## Spin chains and long operators

 However this is cumbersome
## Alternative way:

1) find the properties of elementary excitation (dispersion relation)
2) find their interaction (assuming integrability)
3) solve the Bethe-ansatz equations

## Analytic expression for $f(g)$

## Define

$$
s(t)=\frac{e^{t}-1}{t} \sigma(t)
$$

solve

$$
s(t)=K(2 g t, 0)-4 g^{2} \int_{0}^{\infty} d t^{\prime} K\left(2 g t, 2 g t^{\prime}\right) \frac{t^{\prime}}{e^{t^{\prime}}-1} s\left(t^{\prime}\right)
$$

The cusp anomalous dimension is given by

$$
f(g)=16 g^{2} \sigma(0)
$$

## Analytic (numerical) expression for $\mathrm{f}(\mathrm{g})$

(Benna, Benvenuti, Klebanov, A.S.)


## Strong coupling limit

From the numerical solution one extracts the strong coupling limit of f(g)
$f(g)=\left(4 \pm 10^{-6}\right) g+\left(0.661907 \pm 210^{-6}\right)-\frac{0.0232 \pm 10^{-4}}{g}+\ldots$ while from AdS/CFT we get

$$
f(g)=4 g+3 \log 2 / \pi+\ldots
$$

and many other properties of $\mathrm{f}(\mathrm{g})$ (like the analytic structure in the complex $g$ plane)

## This is remarkable!

- We have essentially solved the planar limit of a gauge theory
- We can obtain the most important function(s) describing properties of the theory for arbitrary coupling (weak to strong)
- We can test highly non-trivial predictions of AdS/CFT
- We can think of applying the same techniques to other theories (the planar limit maybe more important than the conformal invariance)


## Weak coupling expansion of $f(g)$

$$
\begin{aligned}
f(g)= & 8 g^{2}-\frac{8}{3} \pi^{2} g^{4}+\frac{88}{45} \pi^{4} g^{6}-16\left(\frac{73}{630} \pi^{6}+4 \zeta(3)^{2}\right) g^{8} \\
& +32\left(\frac{887}{14175} \pi^{8}+\frac{4}{3} \pi^{2} \zeta(3)^{2}+40 \zeta(3) \zeta(5)\right) g^{10} \\
- & 64\left(\frac{136883}{3742200} \pi^{10}+\frac{8}{15} \pi^{4} \zeta(3)^{2}+\frac{40}{3} \pi^{2} \zeta(3) \zeta(5)\right. \\
& \left.+210 \zeta(3) \zeta(7)+102 \zeta(5)^{2}\right) g^{12} \\
& +128\left(\frac{7680089}{340540200} \pi^{12}+\frac{47}{189} \pi^{6} \zeta(3)^{2}+\frac{82}{15} \pi^{4} \zeta(3) \zeta(5)+70 \pi^{2} \zeta(3) \zeta(7)\right. \\
& \left.+34 \pi^{2} \zeta(5)^{2}+1176 \zeta(3) \zeta(9)+1092 \zeta(5) \zeta(7)+4 \zeta(3)^{4}\right) g^{14}
\end{aligned}
$$

## Details on the equation

$$
s(t)=K(2 g t, 0)-4 g^{2} \int_{0}^{\infty} d t^{\prime} K\left(2 g t, 2 g t^{\prime}\right) \frac{t^{\prime}}{e^{t^{\prime}}-1} s\left(t^{\prime}\right)
$$

with the kernel given by [21]

$$
\begin{equation*}
K\left(t, t^{\prime}\right)=K^{(m)}\left(t, t^{\prime}\right)+2 K^{(c)}\left(t, t^{\prime}\right) \tag{7}
\end{equation*}
$$

The main scattering kernel $K^{(m)}$ of [18] is

$$
\begin{equation*}
K^{(m)}\left(t, t^{\prime}\right)=\frac{J_{1}(t) J_{0}\left(t^{\prime}\right)-J_{0}(t) J_{1}\left(t^{\prime}\right)}{t-t^{\prime}} \tag{8}
\end{equation*}
$$

and the dressing kernel $K^{(c)}$ is defined as the convolution

$$
\begin{equation*}
K^{(c)}\left(t, t^{\prime}\right)=4 g^{2} \int_{0}^{\infty} d t^{\prime \prime} K_{1}\left(t, 2 g t^{\prime \prime}\right) \frac{t^{\prime \prime}}{e^{t^{\prime \prime}}-1} K_{0}\left(2 g t^{\prime \prime}, t^{\prime}\right) \tag{9}
\end{equation*}
$$

where $K_{0}$ and $K_{1}$ denote the parts of the kernel that are even and odd, respectively, under change of sign of $t$ and $t^{\prime}$ :

$$
\begin{align*}
K_{0}\left(t, t^{\prime}\right) & =\frac{t J_{1}(t) J_{0}\left(t^{\prime}\right)-t^{\prime} J_{0}(t) J_{1}\left(t^{\prime}\right)}{t^{2}-t^{\prime 2}} \\
& =\frac{2}{t t^{\prime}} \sum_{n=1}^{\infty}(2 n-1) J_{2 n-1}(t) J_{2 n-1}\left(t^{\prime}\right),  \tag{10}\\
K_{1}\left(t, t^{\prime}\right) & =\frac{t^{\prime} J_{1}(t) J_{0}\left(t^{\prime}\right)-t J_{0}(t) J_{1}\left(t^{\prime}\right)}{t^{2}-t^{\prime 2}} \\
& =\frac{2}{t t^{\prime}} \sum_{n=1}^{\infty}(2 n) J_{2 n}(t) J_{2 n}\left(t^{\prime}\right)
\end{align*}
$$

