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The cusp anomaly: a very important quantity 
in QCD and gauge theories

Old and new results in integrability 

Strong coupling and string theory

Plan of the talk:



The cusp anomaly
appears everywhere...

Renormalization of Wilson loops

Infrared divergences in perturbative QCD 
and HQET

Scattering of gluons (planar limit)



Renormalization of Wilson loops

This quantity is UV divergent

loop Gauge field

W (C) =
〈

0|Pe
ig

∫

C
dxµAµ

|0
〉

For example in QED, after a gaussian integral

W (C) = e
−

e
2

2

∫
dxµdyν

gµν

(x−y)2+a2

point splitting regulator



Renormalization of Wilson loops

in QED

W (C) = e
−

e
2

2

∫
dxµdyν

gµν

(x−y)2+a2

∫
dxµdyν

gµν

(x − y)2 + a2
∼

L(C)

a
+ finite

Notice that

The divergence structure is the same in all gauge 
theories (including QCD and SUSY theories)



Renormalization of Wilson loops

W (C) =
〈

0|Pe
ig

∫

C
dxµAµ

|0
〉

∼ ZCf(gren, C)

Multiplicative renormalization

This renormalization is enough (Polyakov) unless...

ZC = e
−γL/a

in a generic gauge theory



Renormalization of Wilson loops (with 
cusps)

θ

the cusp anomalous dimension
(aka cusp anomaly)

lnZC ! γL/a + Γcusp(g, θ) ln 1/a + finite

Γcusp(g, θ) !
αSNc

2π
(θ cot θ − 1) + O(α2

SN2
c )

Γcusp(g, θ) → f(g)θ

when θ → ∞ in Minkovsky space



Who cares about the cusp anomaly?
The Altarelli-Parisi equation

Parton picture of the hadrons

Parton distribution function

dq(x, t)

dt
=

λ(t)

2π

∫ 1

x

dy

y
q(y, t)Pqq(y)

Evolution Splitting functionCoupling constant

q(x, lnQ2/Q2

0)



Who cares about the cusp anomaly?
The Altarelli-Parisi equation

Pqq(z) = aδ(1 − z) +
f(g)

(1 − z)+
+ ...

∫ 1

0

dzA(z)
1

(1 − z)+
≡

∫
dz

A(z) − A(1)

1 − z

where

conjecture

So this is a measurable quantity which defines the 
behavior of soft gluons (Korchemsky, Radyushkin, Marchesini, etc.) 

It also determines the behavior of MHV scattering 
of gluons (in the planar limit) (Sterman, Bern, Kosover, Dixon, Alday and 

Maldacena)



How do we calculate the f(g)?

Perturbation series in g (shut up and 
calculate approach)

or ... any better idea?



Integrability in planar, N=4 SYM
N=4 is the maximally supersymmetric gauge 
theory in 4 dimensions

It is a conformal theory

Perturbatively it looks a lot like QCD 
although the spectrum is quite different

It is most probably INTEGRABLE (namely it 
looks a lot like the Heisenberg model or any 
other integrable model you have in mind)



Cusp anomaly in N=4 SYM

The cusp anomaly, its interpretation and properties 
extend smoothly to N=4 SYM

Understanding them in N=4 can lead to a deeper 
understanding of the same quantities in QCD (unlike 

for example the spectrum and other low-energy 
observables)



Leading twist long operators

where L ! 1OL = Tr(ΦD
LΦ)

∆ = L + f(g) log L + ...

again the cusp anomaly!

Take some colored scalar field Φ

Under operator mixing it mixes with
OL,m = Tr(DmΦD

L−mΦ)

By diagonalizing the mixing matrix we find



Spin chains and long operators

XL ≡ | ↓, ↓, ..., ↓
〉

XmY XL−m−1 ≡ | ↓, ↓, ..., ↑, ↓, ..., ↓
〉

Find the hamiltonian which reproduces mixing at a 
given order in a loop expansion

Find the eigenvalues of this hamiltonian

This gives the anomalous dimensions 
(Minahan, Zarembo, Beisert, Eden, Staudacher and many others)

Operators and states

Recalling that wave functions which differ by a cyclic permutation of indices correspond

to the same operator, we should impose the constraint that physical states have zero total

momentum:

U |ψ〉 = |ψ〉 , (2.6)

where U is the translation operator

U a1 ⊗ . . . ⊗ aL−1 ⊗ aL = aL ⊗ a1 ⊗ . . . ⊗ aL−1. (2.7)

In the strict large-N limit, all operators (2.1) are independent and there are no other

constraints.

With the spin system interpretation in mind, let us compute the matrix of anomalous

dimensions at one loop. The renormalization of BMN operators with two impurities

was extensively discussed, so the essential pieces of the calculation for the anomalous

dimensions are present throughout the literature (e.g. [4, 13, 11, 15]). We will therefore

skip many details and give only salient features of the derivation, generalizing to arbitrary

scalar operators. We use the standard Feynman rules which follow from the Euclidean

SYM action:

S =
1

g2

∫
d4x tr

{
1

2
F 2

µν + (DµΦi)
2 − 1

2
[Φi, Φj ]

2 + fermions

}
, (2.8)

and we will work in the Feynman gauge, in which the scalar and the gauge boson propa-

gators are equal, up to Lorentz and SO(6) structures.

a b c

Figure 1: One-loop diagrams.

There are three types of planar one-loop diagrams that contribute to the correlation

function (2.3) (fig. 1). We depict the operator O[ψ] by a horizontal bar with scalar

propagators ending on each of the scalar fields (i.e. lattice sites) in the operator (2.1).
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Spin chains and long operators
However this is cumbersome

Alternative way: 

1) find the properties of elementary excitation 
(dispersion relation)

2) find their interaction (assuming integrability)

3) solve the Bethe-ansatz equations



Analytic expression for f(g)

s(t) = K(2gt, 0) − 4g2

∫
∞

0

dt′K(2gt, 2gt′)
t′

et′
− 1

s(t′)

f(g) = 16g2σ(0)

s(t) =
e
t
− 1

t
σ(t)

Define

solve

The cusp anomalous dimension is given by



Analytic (numerical) expression for f(g) 
(Benna, Benvenuti, Klebanov, A.S.)

N ! diag"1; 2; 3; . . .#, and the vector h can be written as
h ! "1$ 2C#eT, where e ! "1; 0; 0; . . .#. The crucial point
for the numerics to work is that the matrix elements of Z
decay sufficiently fast with increasing m, n (they decay like
e%max"m;n#=g). For intermediate g (say g < 20) we can work
with moderate size d by d matrices, where d does not have
to be much larger than g. The integrals in Znm can be
obtained numerically without much effort and so we can
solve for the sn. We find that the results are stable with
respect to increasing d.

Even though at strong coupling all elements of Znm are
of the same order in 1=g, those far from the upper left
corner are numerically small. This last fact makes the
numerics surprisingly convergent even at large g and,
moreover, gives some hope that the analytic form of the
strong coupling expansion of f"g# could be obtained from
a perturbation theory for the matrix equation.

Therefore, when formulated in terms of the Zmn, the
problem becomes amenable to numerical study at all val-
ues of the coupling. We find that the numerical procedure
converges rather rapidly, and truncates the series expan-
sions of s"t# and of the kernel after the first 30 orders of
Bessel functions.

The function f"g# is the lowest curve plotted in Fig. 1.
For comparison, we also plot fm"g# which solves the
integral equation with kernel K"m# [18], and f0"g# which
solves the integral equation with kernel K"m# $ K"c#.
Clearly, these functions differ at strong coupling. The
function f"g# is monotonic and reaches the asymptotic,
linear form quite early, for g ’ 1. We can then study the
asymptotic, large g form easily and compare it with the
prediction from string theory. The best fit result (using the
range 2< g< 20) is

 f"g# ! "4:000 000& 0:000 001#g% "0:661 907

& 0:000 002# % 0:0232& 0:0001
g

$ . . . : (21)

The first two terms are in remarkable agreement with the
string theory result (2), while the third term is a numerical
prediction for the 1=g term in the strong coupling expan-
sion. The coefficients in (21) are obtained by fitting our
results to a polynomial in 1=g with 5 parameters. The error
in the second (third) term is estimated by fitting the nu-
merical data after the first (respectively, first and second)
coefficients have been fixed to their string theoretic values
(2). If one does not fix any coefficient the error in the third
term is somewhat larger (4% rather than 0.5%) while the
error in the second is still negligible. The value 0:0232&
0:0001 for the 1=g term is obtained by fitting the data after
fixing the first two terms to their string theoretic values (2).
The 3-parameter fit gives the same central value but with a
bigger error (4% instead of 0.5%)], which may perhaps be
checked one day against a two-loop string theory calcu-
lation. It is worth mentioning that we obtain a very good fit
to the numerical results without introducing any anoma-
lous terms like logg=g.

We do not need to restrict the numerical analysis to real
values of g; complex values of g are of interest as well. In
[21] it was argued that the dressing phase has singularities
at g ' &in=4, for n ! 1; 2; 3; . . . . Also, their analysis of
the small g series shows that there are square-root branch
points in f"g# at g ! &i=4. Perhaps, this is related to the
cuts in the giant-magnon dispersion relations [26,30–33],
for momenta close to !. Our numerical results indeed
indicate branch points at g ' &i=4, &i=2 with exponent
1=2. Beyond that we observe oscillations of both the real
and imaginary parts of f"g# for nearly imaginary g. Further
work is needed to elucidate the analytical structure of f"g#.

Discussion.—A very satisfying result of this Letter is
that the Beisert, Eden, and Staudacher (BES) integral
equation yields a smooth universal function f"g# whose
strong coupling expansion is in excellent numerical agree-
ment with the spinning string predictions of [7,9]. This
provides a highly nontrivial confirmation of the AdS/CFT
correspondence.

The agreement of this strong coupling expansion was
anticipated in [21] based on a similar agreement of the
dressing phase. However, some concerns about this argu-
ment were raised in [20] based on the slow convergence of
the numerical extrapolations. Luckily, our numerical meth-
ods employed in solving the integral equation converge
rapidly and produce a smooth function that approaches the
asymptotics (2). The crossover region of f"g# where it
changes from the perturbative to the linear behavior lies
right around the radius of convergence, gc ! 1=4, corre-
sponding to g2YMN ! !2. For N ! 3, this would corre-
spond to "s ( 0:25.

 

FIG. 1 (color online). Plot of the solutions of the integral
equations: fm"g# for the Eden and Staudacher kernel [18] K"m#

(upper curve, red), f0"g# for the kernel K"m# $ K"c# (middle
curve, green), and f"g# for the BES kernel K"m# $ 2K"c# (lower
curve, blue). Notice the different asymptotic behaviors. The inset
shows the three functions in the crossover region 0< g< 1.
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Strong coupling limit

From the numerical solution one extracts the strong 
coupling limit of f(g)

f(g) = (4 ± 10−6)g + (0.661907 ± 2 10−6) −
0.0232 ± 10−4

g
+ ...

while from AdS/CFT we get

f(g) = 4g + 3 log 2/π + ...

and many other properties of f(g) (like the analytic 
structure in the complex g plane)



This is remarkable!
We have essentially solved the planar limit of a 
gauge theory

We can obtain the most important function(s) 
describing properties of the theory for arbitrary 
coupling (weak to strong)

We can test highly non-trivial predictions of 
AdS/CFT

We can think of applying the same techniques to 
other theories (the planar limit maybe more 
important than the conformal invariance) 



Weak coupling expansion 
of f(g)

The expansion of the scaling function significantly simplifies as compared to (2.8):

f0(g) = 8 g2 − 8

3
π2 g4 +

88

45
π4 g6 − 16

73

630
π6 g8 + 32

887

14175
π8g10

− 64
136883

3742200
π10g12 + 128

7680089

340540200
π12g14 ∓ . . . . (2.20)

The even zeta terms, and thus the parts containing only even powers of π, are unaffected.

However, (2.19) is not the only curious choice for the constants β(!)
r,s in the dressing

phase (2.10). Another striking choice corresponds to doubling the just discussed special
constants, e.g. to the first few order (2.19) become:

β(3)
2,3 = +4 ζ(3),

β(4)
2,3 = −40 ζ(5),

β(5)
2,3 = +420 ζ(7), β(5)

3,4 = +24 ζ(5), β(5)
2,5 = −8 ζ(5),

β(6)
2,3 = −4704 ζ(9), β(6)

3,4 = −420 ζ(7), β(6)
2,5 = +168 ζ(7). (2.21)

Now the zeta functions of odd argument no longer cancel out. Instead, one finds to
e.g. seven-loop order

f(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(

73

630
π6 + 4 ζ(3)2

)

g8

+ 32

(

887

14175
π8 +

4

3
π2ζ(3)2 + 40 ζ(3) ζ(5)

)

g10

− 64

(

136883

3742200
π10 +

8

15
π4ζ(3)2 +

40

3
π2ζ(3) ζ(5)

+ 210 ζ(3) ζ(7) + 102 ζ(5)2

)

g12

+ 128

(

7680089

340540200
π12 +

47

189
π6ζ(3)2 +

82

15
π4ζ(3) ζ(5) + 70π2ζ(3) ζ(7)

+ 34π2ζ(5)2 + 1176 ζ(3) ζ(9) + 1092 ζ(5) ζ(7) + 4 ζ(3)4

)

g14

∓ . . . . (2.22)

Remarkably, the alternating sum (2.22) is identical to (2.8) for the case of a trivial dress-
ing phase by multiplying all zeta functions with odd arguments by the imaginary unit i,
i.e. the replacement ζ(2n + 1) → i ζ(2n + 1). After this operation, and in contradistinc-
tion the the earlier case as discussed in [13], now all relative signs of the terms in (2.22)
are identical, but the terms are otherwise unchanged! A proof of this transformation will
be given in App. B.

To wrap up the above results, we would like to mention that the scaling functions
fm(g), f0(g) and f(g) are part of a one-parameter family fκ(g) interpolating between
these three choices. The general function is obtained by multiplying the constants in
(2.19) by an overall factor of (1+κ). The resulting universal scaling function fκ(g) is the
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Details on the equation

A crucial property of the integral equation proposed in
[21] is that it is related through integrability to the ‘‘dress-
ing phase’’ in the magnon S-matrix, whose general form
was deduced in [22,23]. In [21] a perturbative expansion of
the phase was given, which starts at the 4-loop order, and at
strong coupling coincides with the earlier results from
string theory [19,22,24–26]. An important requirement
of crossing symmetry [27] is satisfied by this phase, and
it also satisfies the KLOV transcendentality priciple.
Therefore, this phase is very likely to describe the exact
magnon S-matrix at any coupling [21], which constitutes
remarkable progress in the understanding of the N ! 4
SYM theory, and of the AdS/CFT correspondence.

The papers [20,21] thoroughly studied the perturbative
expansion of f"g# which follows from the integral equa-
tion. Although the expansion has a finite radius of con-
vergence, as is customary in certain planar theories (see,
for example, [28]), it is expected to determine the function
completely. Solving the integral equation of [21] is an
efficient tool for attacking this problem. In this Letter we
solve the integral equation numerically at intermediate
coupling, and show that f"g# is a smooth function that
approaches the asymptotic form (2) predicted by string
theory for g > 1. The two leading strong coupling terms
match those in (2) with high accuracy. This constitutes a
remarkable confirmation of the AdS/CFT correspondence
for this nonsupersymmetric observable.

Numerical study of the integral equation.—The cusp
anomalous dimension f"g# can be written as [21,18,29]

 f"g# ! 16g2!̂"0#; (5)

where !̂"t# obeys a certain integral equation. In terms of
the function s"t# ! et$1

t !̂"t# the integral equation is

 s"t# ! K"2gt; 0# $ 4g2
Z 1

0
dt0K"2gt; 2gt0# t0

et
0 $ 1

s"t0#;

(6)

with the kernel given by [21]

 K"t; t0# ! K"m#"t; t0# % 2K"c#"t; t0#: (7)

The main scattering kernel K"m# of [18] is

 K"m#"t; t0# ! J1"t#J0"t0# $ J0"t#J1"t0#
t$ t0

; (8)

and the dressing kernel K"c# is defined as the convolution

 K"c#"t; t0# ! 4g2
Z 1

0
dt00K1"t; 2gt00#

t00

et
00 $ 1

K0"2gt00; t0#;

(9)

where K0 and K1 denote the parts of the kernel that are
even and odd, respectively, under change of sign of t and t0:

 K0"t; t0# !
tJ1"t#J0"t0# $ t0J0"t#J1"t0#

t2 $ t02

! 2

tt0
X1

n!1

"2n$ 1#J2n$1"t#J2n$1"t0#; (10)

 K1"t; t0# !
t0J1"t#J0"t0# $ tJ0"t#J1"t0#

t2 $ t02

! 2

tt0
X1

n!1

"2n#J2n"t#J2n"t0#: (11)

Both K"m# and K"c# can conveniently be expanded as
sums of products of functions of t and functions of t0:

 K"m#"t; t0# ! K0"t; t0# % K1"t; t0# !
2

tt0
X1

n!1

nJn"t#Jn"t0#;

(12)

and

 K"c#"t; t0# !
X1

n!1

X1

m!1

8n"2m$ 1#
tt0

Z2n;2m$1J2n"t#J2m$1"t0#:

(13)

This suggests writing the solution in terms of linearly
independent functions as

 s"t# !
X

n&1

sn
Jn"2gt#
2gt

; (14)

so that the integral equation becomes a matrix equation for
the coefficients sn. The desired function f"g# is now
f"g# ! 8g2s1.

It is convenient to define the matrix Zmn as

 Zmn '
Z 1

0
dt

Jm"2gt#Jn"2gt#
t"et $ 1# : (15)

Using the representations (12) and (13) of the kernels and
(14) for s"t#, the integral equation above is now of the
schematic form

 sn ! hn $
X

m&1

"K"m#
nm % 2K"c#

nm#sm; (16)

whose solution is

 s ! 1

1% K"m# % 2K"c# h: (17)

The matrices are

 K"m#
nm ! 2"NZ#nm; (18)

 K"c#
nm ! 2"CZ#nm; (19)

 Cnm ! 2"PNZQN#nm; (20)

where Q ! diag"1; 0; 1; 0; . . .#, P ! diag"0; 1; 0; 1; . . .#,
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A crucial property of the integral equation proposed in
[21] is that it is related through integrability to the ‘‘dress-
ing phase’’ in the magnon S-matrix, whose general form
was deduced in [22,23]. In [21] a perturbative expansion of
the phase was given, which starts at the 4-loop order, and at
strong coupling coincides with the earlier results from
string theory [19,22,24–26]. An important requirement
of crossing symmetry [27] is satisfied by this phase, and
it also satisfies the KLOV transcendentality priciple.
Therefore, this phase is very likely to describe the exact
magnon S-matrix at any coupling [21], which constitutes
remarkable progress in the understanding of the N ! 4
SYM theory, and of the AdS/CFT correspondence.

The papers [20,21] thoroughly studied the perturbative
expansion of f"g# which follows from the integral equa-
tion. Although the expansion has a finite radius of con-
vergence, as is customary in certain planar theories (see,
for example, [28]), it is expected to determine the function
completely. Solving the integral equation of [21] is an
efficient tool for attacking this problem. In this Letter we
solve the integral equation numerically at intermediate
coupling, and show that f"g# is a smooth function that
approaches the asymptotic form (2) predicted by string
theory for g > 1. The two leading strong coupling terms
match those in (2) with high accuracy. This constitutes a
remarkable confirmation of the AdS/CFT correspondence
for this nonsupersymmetric observable.

Numerical study of the integral equation.—The cusp
anomalous dimension f"g# can be written as [21,18,29]

 f"g# ! 16g2!̂"0#; (5)

where !̂"t# obeys a certain integral equation. In terms of
the function s"t# ! et$1

t !̂"t# the integral equation is

 s"t# ! K"2gt; 0# $ 4g2
Z 1

0
dt0K"2gt; 2gt0# t0

et
0 $ 1

s"t0#;

(6)

with the kernel given by [21]

 K"t; t0# ! K"m#"t; t0# % 2K"c#"t; t0#: (7)

The main scattering kernel K"m# of [18] is

 K"m#"t; t0# ! J1"t#J0"t0# $ J0"t#J1"t0#
t$ t0

; (8)

and the dressing kernel K"c# is defined as the convolution

 K"c#"t; t0# ! 4g2
Z 1

0
dt00K1"t; 2gt00#

t00

et
00 $ 1

K0"2gt00; t0#;

(9)

where K0 and K1 denote the parts of the kernel that are
even and odd, respectively, under change of sign of t and t0:

 K0"t; t0# !
tJ1"t#J0"t0# $ t0J0"t#J1"t0#

t2 $ t02

! 2

tt0
X1

n!1

"2n$ 1#J2n$1"t#J2n$1"t0#; (10)

 K1"t; t0# !
t0J1"t#J0"t0# $ tJ0"t#J1"t0#

t2 $ t02

! 2

tt0
X1

n!1

"2n#J2n"t#J2n"t0#: (11)

Both K"m# and K"c# can conveniently be expanded as
sums of products of functions of t and functions of t0:

 K"m#"t; t0# ! K0"t; t0# % K1"t; t0# !
2

tt0
X1

n!1

nJn"t#Jn"t0#;

(12)

and

 K"c#"t; t0# !
X1

n!1

X1

m!1

8n"2m$ 1#
tt0

Z2n;2m$1J2n"t#J2m$1"t0#:

(13)

This suggests writing the solution in terms of linearly
independent functions as

 s"t# !
X

n&1

sn
Jn"2gt#
2gt

; (14)

so that the integral equation becomes a matrix equation for
the coefficients sn. The desired function f"g# is now
f"g# ! 8g2s1.

It is convenient to define the matrix Zmn as

 Zmn '
Z 1

0
dt

Jm"2gt#Jn"2gt#
t"et $ 1# : (15)

Using the representations (12) and (13) of the kernels and
(14) for s"t#, the integral equation above is now of the
schematic form

 sn ! hn $
X

m&1

"K"m#
nm % 2K"c#

nm#sm; (16)

whose solution is

 s ! 1

1% K"m# % 2K"c# h: (17)

The matrices are

 K"m#
nm ! 2"NZ#nm; (18)

 K"c#
nm ! 2"CZ#nm; (19)

 Cnm ! 2"PNZQN#nm; (20)

where Q ! diag"1; 0; 1; 0; . . .#, P ! diag"0; 1; 0; 1; . . .#,
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