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1 Introduction

Recently, some new experiments have been performed which mea-

sured widths and asymmetry parameters in weak radiative hyperon

decays (WRHD). The situation changed significantly for the decays

Ξ0 → Λγ and Ξ0 → Σ0γ, where asymmetry parameters turned

out to be negative, while previous experiments indicated positive

asymmetry. In this connection, interest was revived in the old

problem of describing of WRHD’s either with the Hara theorem

stating zero asymmetry in Σ+ → pγ decay, or without it.

In the quark model WRHD’s are described by three kinds of

diagrams (see, e.g., Sharma,Verma 88), namely, 1-quark diagrams

with photon emission from the effective sdγ – vertex, 2-quark di-

agrams with bremstrahlung and W -exchange and the 3rd quark

as a spectator, and, finally, diagrams where 2 quarks exchange W -

boson while the 3rd quark emitts photon. As a rule, the latter

class of diagrams can be safely neglected.

However, 1-quark diagram contributions are not able to explain

the observed radiative rates. Even contributions of the penguin-

like diagrams are not strong enough to enhance sufficiently the

s → d + γ decay rate. At the same time, as it was shown in

Sharma,Ryazzudin, 2-quark diagram proved to be important. Cal-

culations of these contributions in the quark model simultaneously

for parity conserving and parity violating amplitudes without phe-

nomenological parameters do not yield agreement with the data,

in particular with taking account of the new experiments.
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That is why parity violating amplitudes are often calculated

within the quark models of type Sharma,Verma, whereas parity

conserving ones are treated with the help of the unitary models

of nonleptonic decays, vector-dominance hypothesis and SU(6)W
symmetry (see Zenczykowski). Recently (Zenczykowski06), it was

attempted to describe in a unique way weak nonleptonic and ra-

diative hyperon decays. Taking account of the complexity of the

problem, the author mainly succeeded in describing of the radiative

hyperon decays.

We would like to propose on the basis of the quark model a

phenomenological model which however opens the way to theo-

retical analysis of the problem. We also show that quark models

are related to models based on unitary symmetry and pole models.

Numerical analysis partly follow the lines of a nice work of Neufeld.

2 Kinematics of the weak radiative hyperon decay

A gauge-invariant form of the amplitude of the weak radiative de-

cay Bi → Bf + γ is usually written in the following way:

AW = B̄f(B
PC + APV γ5)k̂ǫ̂Bi, (1)

where Bi Bf are Dirac spinors of the initial and final baryons, q

being 4-momentum of the photon (kc.m. ≡ kγ is respectively the

3-momentum of the photon in the rest frame of the initial baryon),

ǫµ being photon polarization 4-vector.

The partial width of the radiative hyperon decay in terms of the

phenomenological parity-violating (PV)APV and parity-conserving

(PC) BPC amplitudes are given by

Γγ =
k3
c.m.

π
(|APV |2 + |BPC|2), (2)
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while the corresponding asymmetry is written as

Aγ =
2Re(APV ∗BPC)

|APV |2 + |BPC|2 . (3)

Experimental data on rates and branching ratiosBR = Γγ/Γ(total)

and asymmetry parameters are given in Table 1.

Decay BR (×103) Γγ × 10+15 Aγ k3
γ × 103 3

Σ+ → pγ 1, 23 ± 0, 05 10.25 ± 0.40 −0, 76 ± 0, 08 11.4

Σ0 → nγ − - − 11.6

Λ0 → nγ 1, 75 ± 0, 15 4.43 ± 0.40 − 4.25

Ξ0 → Λγ 1, 16 ± 0, 08 2.67 ± 0.20 −0, 78 ± 0, 19 6.23

Ξ0 → Σ0γ 3, 33 ± 0, 10 7.65 ± 0.19 −0, 63 ± 0, 09 1.60

Ξ− → Σ−γ 0, 127 ± 0, 023 0.502 ± 0.090 − 1.64

Table 1: Weak radiative hyperon decays (WRHD), experiment [1], BR is the branching
ratio of the radiative decay, Γγ is the radiative partial width, and Aγ is the asymmetry
parameter of teh WRHD.
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3 On the 1-quark amplitudes of the radiative hy-

peron decay

Already from the partial decay widths it could be seen that 1-quark

amplitudes should give a small contribution to the real partial

widths. This can be stated, e.g., from the data on Ξ−,0 → Σ−,0γ
decays. Really, the Ξ− → Σ−γ decay can be explained (within the

quark model) only by the 1-quark diagram, and its reduced partial

width in the units 10−7µN is about 4.0 ( see the 4th column of the

Table 5), whereas the reduced partial width of the Ξ0 → Σ0γ de-

cay, equal to it in the model with the only 1-quark diagram, turns

out to be ∼60.0 in the same units, which show the necessity to go

out of the 1-quark diagram description.

Even an enhancement due to the penguin diagrams does not

solve the problem.

The standard 1-quark diagram contribution is given by the ef-

fective weak strangeness-violating neutral current

JW
µ = (Dds + Fds)B̄

α
2OµB

3
α + (Dds − Fds)B̄

3
αOµB

α
2 , (4)

where Bα
β is the baryon octet, α, β = 1, 2, 3, B3

1 = p etc. Putting

Dds = −b, Fds/Dds = 2/3 one reproduces standard quark model

results (see 2nd column of Table 2, and in applications, generally

speaking, one takes bPC 6= bPV ( the same for Dds, Fds).
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Decay [4] Eq.(??) Eq.(4)

Σ+ → pγ −b/3 0 −Fds +Dds

Σ0 → nγ b/3
√

2 ad/
√

2 (Fds −Dds)/
√

2

Λ0 → nγ 3b/
√

6 ad/
√

6 −(3Fds +Dds)/
√

6

Ξ0 → Λγ b/
√

6 −ad/
√

6 (3Fds −Dds)/
√

6

Ξ0 → Σ0γ −5b/3
√

2 −ad/
√

2 −(Fds +Dds)/
√

2

Ξ− → Σ−γ 5b/3 0 Fds +Dds

Table 2: Contributions of the 1-quark diagrams and of the effective strangeness-changing
neutral SU(3)f current to WRHD.

4 On the structure of the 2-quark amplitudes

Let us consider now contributions of the 2-quark weak radiative

transitions s + u→ u + d + γ with W -exchange.

We begin with the analysis of a set of diagrams of the Σ+ → pγ–

decay. The matrix element of the Σ+ → pγ decay can be put in
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the form

6 < p↓, γ(+1)|O|Σ+
↑ >= (5)

=< 2u2u2d1 − u2d2u1 − d2u2u1, γ(+1)|O|
|2u1u1s2 − u1s1u2 − s1u1u2 >=

= 4 < u2u2d1, γ(+1)|O|u1u1s2 > −
4 < u2u2d1, γ(+1)|O|u1s1u2 > −
−4 < u2d2u1, γ(+1)|O|u1u1s2 > +

4 < u2d2u1, γ(+1)|O|u1s1u2 >,

where q1,2 means states with definite spin projection q↑,↓ of the

quark inside the baryon. An explicit form of the operator O =

OPV + OPC is for a moment irrelevant to us. The 1st matrix ele-

ment (m.e.) in the RHS of the last expression, Eq.(6),

< u2u2d1, γ(+1)|O|u1u1s2 > in the case of the W -exchange be-

tween the quarks is described by the 1st diagram of Fig.1, because

this m.e. cannot be represented by a diagram with a spectator. It

is plausible to assume that its contribution is small.

s2

u1

u1

u2

d1

u2

W

γ

u1

s2

d1

d2

u1

d2

W

γ

s1

u2

d1

u1

d2

d2

W

γ

Fig. 1. The 3-quark diagrams without spectator quark (q1 means

q↑, q2 means q↓, q = u, d, s)

There are three different diagrams of Fig.2 with the u2 quark as

a spectator which give a contribution to the 2nd m.e. of the RHS

of Eq.(6) < u2u2d1, γ(+1)|O|u1s1u2 >= A1, and

A1 = efuA + eisE + eiuB =
2

3
A− 1

3
E +

2

3
B.
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Here A corresponds to the non-flip transition quark amplitude with

all quarks having spin projection +1/2:

s↑ + u↑ → u↑ + d↑;

s1

u1

u2

u2

d1

u1

u2

W

γ
s1 s2

u1

u2

u2

d1

u2

W

γ
s1

u1 u2

u2

u2

d1

u2

W
γ

Fig. 2. The 3-quark diagrams of the decay Σ+ → pγ corre-

sponding to the matrix element A1 with the 3rd quark u2 = u↓ as

a spectator.

E corresponds to the non-flip transition quark amplitude with

quarks having different spin projections:

s↓ + u↑ → u↓ + d↑
while B corresponds to the spin-flip transition quark amplitude

with s quark spin projection equal to +1/2

s↑ + u↓ → u↓ + d↑;
numbers of the coefficients are just electric charges of quarks.

There are three different diagrams of Fig.3 with the u1 quark as

a spectator which give a contribution to the 3rd m.e. of the RHS

of Eq.(6) < u2d2u1, γ(+1)|O|u1u1s2 >= A3:
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Fig. 3. The 3-quark diagrams of the decay Σ+ → pγ corre-

sponding to the matrix element A3 with the 3rd quark u1 = u↑ as

a spectator. with quark u2 as a spectator

s2

u1

u1

u2

d2d1

u1

W
γ

s2 u1

u1

u1

u2

d2

u1

W

γ
s2

u1 u2

u1

u2

d2

u1

W
γ

A3 = efuC + efdE + eiuÃ =
2

3
C − 1

3
E +

2

3
Ã,

where two new coefficients are introduced: C corresponds to the

spin-flip transition quark amplitude with s quark spin projection

equal to -1/2

s↓ + u↑ → u↑ + d↓, while Ã corresponds to the non-flip tran-

sition quark amplitude with all quarks having spin projection -

1/2: s↓ + u↓ → u↓ + d↓. To the 4th m.e. of the RHS of Eq.(6)

< u2d2u1, γ(+1)|O|u1s1u2 > there are two kinds of contributions,

the first given by the diagrams of Fig.4

s1

u1

u2

u1

d2d1

u2

W

γ

s1 s2

u1

u2

u1

d2

u2

W

γ
s1

u1 u2

u2

u1

d2

u2

W
γ

Fig. 4. The 3-quark diagrams of the decay Σ+ → pγ corre-

sponding to the matrix element A2 with the 3rd quark u2 = u↓ as

a spectator.

A2 = efdA + eisC + eiuD = −1

3
A− 1

3
C +

2

3
D,
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where D corresponds to the non-flip transition quark amplitude

with different spin projections of quarks,

s↑ + u↓ → u↑ + d↓, and, the second given by the diagrams of

Fig.5 with quark u1 as a spectator:

A4 = eisÃ + efdB + efuD =
2

3
D − 1

3
Ã− 1

3
B.

s1

u2

u1

u2

d2

s2

u1

W

γ
s1 u1

u2

u1

u2

d2

u1

W

γ
s1

u2 d1

u1

u2

d2

u1

W
γ

Fig. 5. The 3-quark diagrams of the decay Σ+ → pγ corresponding

to the matrix elementA4 with the 3rd quark u1 = u↑ as a spectator.

Totally there are 4 combinations of the m.e.’s A, Ã, B, C,D,E

denoted as Ak, k = 1, 2, 3, 4. Finally, we have

< p↓, γ(+1)|O|Σ+
↑ >=

2

3
(−2A1 + A2 − 2A3 + A4). (6)

In a similar way one can obtain expressions for the amplitudes

of all the other radiative decays.

Upon assuming that spectator quarks do not change amplitudes

Ak, k = 1, 2, 3, 4, while going from one decay to another all the

amplitudes can be expressed in terms of these quantities

< p↓, γ(+1)|O|Σ+
↑ >=

2

3
(−2A1 + A2 − 2A3 + A4), (7)

< n↓, γ(+1)|O|Σ0
↑ >=

2

3
√

2
(A1 − 2A2 − 2A3 + A4),

< n↓, γ(+1)|O|Λ↑ >=
2√
6
(A1 − 2A2 − A4),

< Λ↓, γ(+1)|O|Ξ0
↑ >=

2√
6
(A1 − A2),

< Σ0
↓, γ(+1)|O|Ξ0

↑ >=
2

3
√

2
(A1 + A2 − 2A3 + 4A4).
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They depend not on all Aks, but only on their linear combinations

B1 = A1 −A2, B2 = A2 + A3, B3 = A3 −A4.

It is straightforward to show that in the model of [4] Aks are

given by
APV

1 = APC
1 = 1

6(1 − 2ζ)(1 +X),

APV
2 = APC

2 = −1
6
(1 − 2ζ)(1 −X),

APV
3 = APC

4 = 1
6(1 +X),

APV
4 = APC

3 = −1
6(1 +X),

(8)

where X = k/2mu and 6ζ = (1−mu/ms) = (1− ǫ) Sharma. One

can see that up to a factor this formula reproduces their results

and the 3rd column in Table 4 of the present work.

Calculations of the quark diagrams along the lines of Sharma

allow one to find also the amplitudes A, Ã, B, C,D,E in the first

order in k and linear symmetry breaking by the mass of the strange

quark ms. (The last assertion means that if a photon is emitted by

the strange quark of the corresponding amplitudesA, Ã, B, C,D,E,

one should put a factor ǫ = mu/ms,mu = md.

Namely, in this approximation and in the units of

(eGFsinθCcosθC/
√

2mu)

|ψ(k)|2 with X = k/2mu the PC-amplitudes have the form

APC = ÃPC = 0, BPC = −(1 +X), CPC = −(1 +X),

DPC = EPC = 1 +X ,

and these expressions are valid for the photon emitted off the

quark with the spin projection +1/2.

When a photon is emitted off the quark with the spin projection

-1/2 one should change the sign of X in the amplitudes DPC and

CPC:

Putting X = 0, ǫ = 1− 6ζ in the PV-amplitudes, one get’s the

results of Zencz for the 2-quark transitions with the 3rd quark as

a spectator.

The results are put in the 3rd columns of Tables 3,4, where the
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overall factor (κ0/mu/
√

2)GFsinθCcosθC |ψ(q)|2 is assumed.

Decay [8] [4] Eq.(7)

Σ+ → pγ − 5+ǫ
9
√

2
b 2

9
[−3 − 2X + ζ(3 +X)] 2

3
(−2APV

1 + APV
2 − 2APV

3 + APV
4 )

Σ0 → nγ −1−ǫ
18
b 2

9
√

2
[−2X + ζ(−3 +X)] 2

3
√

2
(APV

1 − 2APV
2 − 2APV

3 + APV
4 )

Λ0 → nγ 3+ǫ
6
√

3
b 2

3
√

6
[−2 + ζ(−3 +X)] 2√

6
(APV

1 − 2APV
2 −APV

4 )

Ξ0 → Λγ − 2+ǫ
9
√

3
b 2

3
√

6
[1 − 2ζ] 2√

6
(APV

1 −APV
2 )

Ξ0 → Σ0γ 1
3b

2
9
√

2
[−3 − 2X − 2ζX ] 2

3
√

2
(APV

1 + APV
2 − 2APV

3 + 4APV
4 )

Ξ− → Σ−γ 0 0 0

Table 3: WRHD, 2-quark diagram contributions to PV-amplitudes

At X = 0 and 6ζ = (1 − ǫ) these results go into those of [8]

with
√

2κ0 = bZ .

Note that the 2-quark PV-amplitudes of [10] can be written

in terms of those of [4] through another relation, namely, as a

superposition of the PV- and PV-amplitudes of [4], APV,Zen =

x · APV,Sh + AP ,Sh; this fact is due to the inclusion of states of
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Decay [8] [4] Eq.(7)

Σ+ → pγ − 1−ǫ
9
√

2
b 2

9[X + ζ(3 +X)] 2
3(−2APC

1 + APC
2 − 2APC

3 + APC
4 )

Σ0 → nγ −5+ǫ
18
b 2

9
√

2
[3 +X + ζ(−3 +X)] 2

3
√

2
(APC

1 − 2APC
2 − 2APC

3 + APC
4 )

Λ0 → nγ 1+ǫ
6
√

3
b 2

3
√

6
[1 −X + ζ(−3 +X)] 2√

6
(APC

1 − 2APC
2 −APC

4 )

Ξ0 → Λγ 2+ǫ
9
√

3
b 2

3
√

6
[1 − 2ζ] 2√

6
(APC

1 −APC
2 )

Ξ0 → Σ0γ 1
3b

2
9
√

2
[3 + 4X − 2ζX ] 2

3
√

2
(APC

1 + APC
2 − 2APC

3 + 4APC
4 )

Ξ− → Σ−γ 0 0 0

Table 4: WRHD, 2-quark diagram contributions to PC-amplitudes
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different parities (x being a parameter equal to zero in the exact

unitary symmetry scheme and taken equal to 1/3 in calculations

with SU(3) breaking [10]).

The total PV-amplitudes APV are described practically in the

same way in various models as a sum of 2- and 1-quark transition

contributions.
Our best fit is: bPV /3 = 0.96, dPV = −0.5 ( in units 10−7µN),

ǫPV = −5/16. (In the interval |ǫPV | ≤ 5/16 the results are prac-
tically the same.)

APV (Σ+ → pγ) = −(5 + ǫPV )

9
√

2
bPV +

1√
2
dPV = − 1√

2
(1.50 + 0.50) = −1.41; (9)

APV (Σ0 → nγ) = −(1 − ǫPV )

18
bPV − 1

2
dPV =

1

2
(−0.42 + 0.50) = 0.04; (10)

APV (Λ → nγ) =
(3 + ǫPV )

6
√

3
bPV − 3

√
3

2
dPV =

1√
3
(1.35 + 2.25) = 2.08; (11)

APV (Ξ0 → Λγ) = −(2 + ǫPV )

9
√

3
bPV +

√
3

2
dPV =

1√
3
(−0.54− 0.75) = −0.75; (12)

APV (Ξ0 → Σ0γ) =
1

3
bPV − 5

2
dPV = 0.95 + 1.25 = 2.20; (13)

APV (Ξ− → Σ−γ) = 0 · bPV +
5√
2
dPV = −1.75. (14)

One can see that all observed decays have contributions of the

same order of magnitude to the PV-amplitudes (but the last one,

as it is obvious) from the 2- and 1-quark diagrams.

The case of the PC-amplitudes proves to be more difficult. In-

deed, if in the quark model of [4] the PV-amplitudes APV ’s have

the same structure as APC ’s (see the 3rd columns in Tables 3,4), in

a series of works the PC-amplitudes were analysed in terms of pole

models and unitary symmetry models, elaborated for description
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of nonleptonic hyperon decays without a direct appeal to quark

models (Zencz-2006):

B(Σ+ → pγ) =

√
2

3
(
f

d
− 1)(1 − ǫ)((

F

D
− 1))C (15)

B(Σ0 → nγ) =
4

3
C − 1

3
(
f

d
− 1)(1 − ǫ)(

F

D
− 1)C

B(Λ → nγ) =
4

3
√

3
C +

1

9
√

3
(
3f

d
+ 1)(1 − ǫ)(

3F

D
+ 1)C

B(Ξ0 → Λγ) = − 4

3
√

3
C − 1

9
√

3
(
3f

d
− 1)(1 − ǫ)(

3F

D
− 1)C

B(Ξ0 → Σ0γ) = −4

3
C +

1

3
(
f

d
+ 1)(1 − ǫ)(

F

D
+ 1)C

B(Ξ− → Σ−γ) = −
√

2

3
(
f

d
+ 1)(1 − ǫ)(

F

D
+ 1)C

At first sight, it seems impossible to compare the conclusions of

this and similar models with the quark models except as in the

limit of the exact SU(6) model.

Nevertheless, we shall show now in what way it is possible to

expand this expression into a sum of 1- and 2- quark contributions

for all the PC-amplitudes.
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For this purpose, it is sufficient to put f/d = −1 + z, F/D =

2/3 + Z in the PC-amplitudes of Eq.(16) (see Eq.(5.2b) in [8]).

With this step the PC-amplitudes are splitted into the part corre-

sponding to 2- quark contributions (the 1st term without z and/or

Z) and three parts corresponding to 1- quark contributions pro-

portional to the factors z, Z and z · Z.

One can easily be conviced that with z = Z = 0 relations,

Eq.(16) reduces to redefinitions of the 2nd column of Table 3.

Instead, at Z = 0 the 1-quark contributions proportional to z

coincide up to redefinitions with those obtained in [4] and Eq.(4)

with Fds/Dds = 2/3 (see the 2nd and the last columns of Table 2).

The terms with Z 6= 0 also correspond to the 1-quark contributions

but at a different effective value of the ratio Fds/Dds in Eq.(4),

namely, the terms proportional to Z at z = 0 correspond to the

choice of the effective ds - current with Fds/Dds = −1, while the

terms proportional to z · Z correspond to pure Fds - current (see

the last column of Table 2).

Consider now one-by-one all the hyperon decays beginning from

the transformation of the PC-amplitude of the decay Σ+ → pγ

from [8] and putting also our best fit results (C = 6.3 in units

10−7µN , z = 0.05, Z = 0.16, ǫ = −2.0) for every contribution and

their sum.

B(Σ+ → pγ) = [
4

9
√

2
−

√
2

9
z − 2

√
2

3
Z +

√
2

3
z · Z](1 − ǫ)Z · C ⇒(16)

√
2

3
6.3(2 − 0.05 − 0.96 + 0.024) = 3.00.

It is seen that the main contribution comes from the 2-quark am-

plitudes and from the 1-quark amplitude with the effective ds-

current with Fds/Dds = −1, whereas the standard 1- quark con-

tribution, corresponding to the choice of the effective ds - current

with Fds = (2/3)Dds is small and the last 1- quark contribution
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with the pure Fds effective current could be safely neglected.

Formally, we write expansion also for non-observable decay Σ0 →
nγ:

B(Σ0 → nγ) =
4

3
C − 1

3
(
f

d
− 1)(1 − ǫ)(

F

D
− 1)C

⇒ [
4(5 + ǫ)

18
+

1

9
z(1 − ǫ) +

2

3
(1 − ǫ)Z − 1

3
z(1 − ǫ)Z] · C ⇒ (17)

1

3
6.3(2.00 + 0.05 + 0.96 − 0.024) = 6.33;

and all we have said previously about the decay Σ+ → pγ is valid

for this decay too.

Next we consider the decay Λ → nγ.

B(Λ → nγ) =
4

3
√

3
C +

1

9
√

3
(
3f

d
+ 1)(1 − ǫ)(

3F

D
+ 1)C(18)

⇒ [
4(1 + ǫ)

6
√

3
+

1√
3
z(1 − ǫ) − 2

3
√

3
(1 − ǫ)Z +

1√
3
z(1 − ǫ)Z] · C ⇒

1√
3
6.3(−0.667 + 0.15 − 0.32 + 0.024) = −2.96.

It is seen that here the main contribution comes from the 2-quark

amplitudes and from the 1-quark amplitude with the effective ds -

current with Fds/Dds = −1, whereas the standard 1-quark contri-

bution is small. The last 1-quark contribution with the pure Fds
effective current proportional to z · Z from now on is neglected.

Now let us consider radiative decays of the cascade hyperons.

B(Ξ0 → Λγ) = − 4

3
√

3
C − 1

9
√

3
(
3f

d
− 1)(1 − ǫ)(

3F

D
− 1)C(19)

⇒ [−4(2 + ǫ)

9
√

3
− 1

3
√

3
z(1 − ǫ) +

4

3
√

3
(1 − ǫ)Z − 1√

3
z(1 − ǫ)Z] · C ⇒

1√
3
6.3(−0.05 + 0.64 − 0.024) = 2.06.
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Here the main contribution comes from the 1-quark amplitude with

the effective ds - current with Fds/Dds = −1 while the 2-quark

amplitudes vanish by the choice of ǫ. This solution is dictated by

observed negative asymmetry in this decay.

The next PC-amplitude has the form:

B(Ξ0 → Σ0γ) = −4

3
C +

1

3
(
f

d
+ 1)(1 − ǫ)(

F

D
+ 1)C (20)

⇒ [−4

3
+

5

9
z(1 − ǫ) + 0 · Z +

1

3
z(1 − ǫ)Z] · C ⇒

1

3
6.3(−4.0 + 0.25 + 0.024) = −7.82.

In this decay the main contribution to the PC-amplitude comes

from the 2-quark amplitudes while the 1-quark contribution with

the effective ds - current with Fds/Dds = −1 is small and the

standard 1- quark contribution corresponding to the choice of the

effective ds - current with Fds = (2/3)Dds is zero.

In conclusion we give the PC-amplitude of the decay Ξ− → Σ−γ.

B(Ξ− → Σ−γ) = −
√

2

3
(
f

d
+ 1)(1 − ǫ)(

F

D
+ 1)C(21)

⇒ 0 · C − 5
√

2

9
z(1 − ǫ)C + 0 · Z · C −

√
2

3
z(1 − ǫ)Z · C ⇒

−
√

2

3
6.3 · (0.25 + 0.024) = −0.81,

and here there are no 2-quark contributions, the 1-quark contribu-

tion with the effective ds-current with Fds/Dds = −1 is zero while

the standard 1-quark term gives the main contribution.

So the 1st term in every formula for the PC-amplitudes (i.e., for

PC-amplitudes at z = Z = 0 or, which is the same, at f/d = −1,

F/D = 2/3) corresponds exactly to standard expressions fir 2-

quark contributions at X = 0 (see Table 4).

The 1-quark contributions, proportional to z, also coincide with

those in Sharma and Zenczykowski. However, and it is important,

17



if usualy in the quark model the PV- and PC- amplitudes had

identical factors of the 2-quark terms, in recent works and in the

present one this is not the case. (Even more, the parameter ǫ is

negative here and different for the PV- and PC-amplitudes.) It can

be thought that in this way phenomenological models effectively

take into account the difference between the dynamics of the pro-

cesses going with and without parity conservations. Our results

are given in Table 5.

Unfortunately, at the present time, it seems to be impossible to

perform dynamical calculations in an unambiguous way.
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Deacy APV BPC πΓγ/k
3
γ Aγ k3

γ × 103 3

Σ+ → pγ -1.41 3.00 11.4 -0.74 11.4

(11.0 ± 0.4)exp. (−0, 76 ± 0, 08)

Σ0 → nγ 0.04 6.27 40.0 0.01 11.6

Λ0 → nγ 2.08 -2.95 13.0 -0.94 4.25

(13.0 ± 1.1)exp.

Ξ0 → Λγ -0.75 2.06 4.08 -0.64 6.23

(5.4 ± 0.4)exp. (−0, 78 ± 0, 19)

Ξ0 → Σ0γ 2.20 -7.82 66.0 -0.52 1.60

(59.75 ± 2.0)exp. (−0, 63 ± 0, 09)

Ξ− → Σ−γ -1.75 -0.81 3.7 0.76 1.64

(3.82 ± 0.8)exp.

Table 5: WRHD, phenomenological model and experiment [1]. Amplitudes APV and BPC

are in units of 10−7µN , πΓγ/k
3

γ = |APV |2 + |BPC |2 in units of (10−7µN)2.

5 Conclusion

It is shown that many models describing weak radiative hyperon

decays can be reduced to rather a simple quark model including 1-

quark transitions with the effective sdγ- vertex and 2-quark process

with the W – exchange s+ u→ u+ d+ γ. As an example, quark
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and unitary models are considered.

Using them as a basis, a phenomenological model is constructed

which describes the data and gives clear predictions for the asym-

metry parameters of the decays Λ → n + γ and Ξ− → Σ− + γ.

For the 2-quark processes with the W – exchange rather gen-

eral expressions are obtained which could be used not only for the

hyperon decays but also for the decay of the new heavy baryons.

We do not discuss here a traditional problem connected with the

Hara theorem prediction of zero asymmetry in the decay Σ+ →
p+γ, as already in the GIM model this problem can be overcome.

Nevertheless, there are many theoretical problems unresolved in

the models of weak radiative hyperon decays (together with those

of hyperon nonleptonic decays) which expect a more thorough anal-

ysis.
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Appendix A

The 2-quark contributions to neutral hyperon decays

1. Let us analyse the decay Σ0 → nγ, although it cannot be seen

soon experimentally. The 2-quark amplitude of this decay can

be expressed via the following matrix elements:

6
√

2 < n↓, γ(+1)|O|Σ0
↑ >= (.1)

=< 2d2d2u1 − d2u2d1 −u2d2d1, γ(+1)|O|2u1d1s2 + 2d1u1s2−
−u1s1d2 − s1u1d2 − d1s1u2 − s1d1u2 >=

= 8 < d2d2u1, γ(+1)|O|u1d1s2 > −8 < d2d2u1, γ(+1)|O|u1s1d2 > −
−4 < d2d2u1, γ(+1)|O|d1s1u2 > −8 < d2u2d1, γ(+1)|O|u1d1s2 > +

+4 < d2u2d1, γ(+1)|O|u1s1d2 > +4 < d2u2d1, γ(+1)|O|d1s1u2 >

The 1st and 2nd matrix elements (m.e.’s ) in the RHS of

this expression correspond to the 2nd and 3rd diagrams of

Fig.1, so we do not consider them (see [5]). The 2nd m.e.

in the RHS of Eq.(A.1) < d2d2u1, γ(+1)|O|u1s1d2 >= A2

is described by three diagrams of Fig.3 but with the quark

d2 as a spectator. To the 4th m.e. in the RHS of Eq.(A.1)

< d2u2d1, γ(+1)|O|u1d1s2 >= A3 three diagrams of Fig.3

contribute but with the quark d1 as a spectator.

To the 5th m.e. in the RHS of Eq.(A.1)< d2u2d1, γ(+1)|O|u1s1d2 >=

A1 three diagrams of Fig.2 contribute but with the quark d2

as a spectator.

To the 6th m.e. in the RHS of Eq.(A.1)< d2u2d1, γ(+1)|O|d1s1u2 >=

A4 three diagrams of Fig.5 contribute but with the quark d1

as a spectator. Their sum gives

< n↓, γ(+1)|O|Σ0
↑ >=

2

3
√

2
(A1 − 2A2 − 2A3 + A4).
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2. Now let us describe the decay Λ → nγ:

2
√

6 < n↓, γ(+1)|O|Λ↑ >= (.2)

=< 2d2d2u1−d2u2d1−u2d2d1, γ(+1)|O|u1s1d2+s1u1d2−d1s1u2−s1d1u2

= 4 < d2d2u1, γ(+1)|O|u1s1d2 > −4 < d2d2u1, γ(+1)|O|d1s1u2 > −
−4 < d2u2d1, γ(+1)|O|u1s1d2 > +4 < u2d2d1, γ(+1)|O|d1s1u2 > .

The 1st m.e. in the RHS of Eq.(A.2)< d2d2u1, γ(+1)|O|u1s1d2 >=

A2 is given by the contributions of three diagrams of Fig.3

with the spectator d2. The 2nd m.e. in the RHS of Eq.(A.2)

< d2d2u1, γ(+1)|O|d1s1u2 > in the case of W -exchange be-

tween quarks can be described by the diagram of Fig.1 and

should be very small. To the 3rd m.e. in the RHS of Eq.(A.2)

< d2u2d1, γ(+1)|O|u1s1d2 >= A1 three diagrams of Fig.2

contribute but with the quark d2 as a spectator.

To the 4th m.e. in the RHS of Eq.(A.2)< d2u2d1, γ(+1)|O|d1s1u2 >=

A4 three diagrams of Fig.5 contribute but with the quark d1

as a spectator.

Finally one obtains:

< n↓, γ(+1)|O|Λ↑ >=
2√
6
(A1 − 2A2 −A4).

3. For the decay Ξ0 → Λγ we have

2
√

6 < Λ↓, γ(+1)|O|Ξ0
↑ >= (.3)

=< u2s2d1+s2u2d1−d2s2u1−s2d2u1, γ(+1)|O|2s1s1u2−s1u1s2−u1s1s2 >

= 4 < u2s2d1, γ(+1)|O|s1s1u2 > −4 < u2s2d1, γ(+1)|O|s1u1s2 > −
−4 < d2s2u1, γ(+1)|O|s1s1u2 > +4 < d2s2u1, γ(+1)|O|s1u1s2 > .

The 1st and the 3rd matrix elements (m.e.’s ) in the RHS

of this expression correspond to the 2nd and 3rd diagrams of
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Fig.1, and we neglect them both. The 2nd m.e. in the RHS

of Eq.(A.3) < u2s2d1, γ(+1)|O|s1u1s2 >= A1 is given by the

contributions of three diagrams of Fig.2 with the spectator s2.

To the 4th m.e. in the RHS of Eq.(A.3)< d2s2u1, γ(+1)|O|s1u1s2 >=

A2 three diagrams of Fig.3 contribute but with the quark s2

as a spectator. Finally,

< Λ↓, γ(+1)|O|Ξ0
↑ >=

2√
6
(A1 −A2).

4. For the decay Ξ0 → Σ0γ one has

6
√

2 < Σ0
↓, γ(+1)|O|Ξ0

↑ >=< 2u2d2s1+2d2u2s1− (.4)

−u2s2d1−s2u2d1−d2s2u1−s2d2u1, γ(+1)|O|2s1s1u2−s1u1s2−u1s1s2 >=

8 < u2d2s1, γ(+1)|O|s1s1u2 > −8 < u2d2s1, γ(+1)|O|s1u1s2 > −
−4 < u2s2d1, γ(+1)|O|s1s1u2 > +4 < u2s2d1, γ(+1)|O|s1u1s2 > −
−4 < d2s2u1, γ(+1)|O|s1s1u2 > +4 < d2s2u1, γ(+1)|O|s1u1s2 > .

The 1st m.e. in the RHS of Eq.(A.4)< u2d2s1, γ(+1)|O|s1s1u2 >=

A4 is described by three diagrams of Fig.5 with the spectator

s1.

The 2nd m.e. in the RHS of Eq.(A.4)< u2d2s1, γ(+1)|O|s1u1s2 >=

A3 is given by the contributions of three diagrams of Fig.3 with

the spectator s1.

The 3rd and the 5th matrix elements (m.e.’s ) in the RHS of

this expression correspond to the diagrams of Fig.1 type, and

we neglect them both.

To the 4th m.e. in the RHS of Eq.(A.4)< u2s2d1, γ(+1)|O|s1u1s2 >=

A1 three diagrams of Fig.2 contribute but with the quark s2

as a spectator. And, finally, to the 6th m.e. in the RHS of

Eq.(A.4) < d2s2u1, γ(+1)|O|s1u1s2 >= A2 three diagrams of
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Fig.3 contribute but with the quark s2 as a spectator. Their

sum gives:

< Σ0
↓, γ(+1)|O|Ξ0

↑ >=
2

3
√

2
(A1 + A2 − 2A3 + 4A4).

The analysis performed shows that decays of all the neutral hyper-

ons as well as that of Σ+ → pγ can be expressed in terms of the

same amplitudes Ak, k = 1, 2, 3, 4, assumig that spectator quarks

do not change them.

25



Appendix B

Relation between two different representations of the PC-amplitudes

The form of the PC-amplitudes considered here is not obviously

unique in the framework of unitary symmetry models. In one of

the recent works [10] another form was used which was close to the

old form presented by [13]:

B(Σ+ → pγ) =
√

2(
f

d
− 1)(µΣ+ − µp)

N

µp
, (.1)

B(Σ0 → nγ) = [−(
f

d
− 1)(µΣ0 − µn) +

1√
3
(
3f

d
+ 1)µΣΛ]

N

µp
,

B(Λ → nγ) = [
1√
3
(
3f

d
+ 1)(µΛ − µn) − (

f

d
− 1)µΣΛ]

N

µp
,

B(Ξ0 → Λγ) = [− 1√
3
(
3f

d
− 1)(µΞ0 − µΛ) − (

f

d
+ 1)µΣΛ]

N

µp
,

B(Ξ0 → Σ0γ) = [(
f

d
+ 1)(µΣ0 − µΣ0) +

1√
3
(
3f

d
− 1)µΣΛ]

N

µp
,

B(Ξ− → Σ−γ) = −
√

2(
f

d
+ 1)(µΞ− − µΣ−)

N

µp
.

They can be related between them, as was noted in [8], with the

help of the simple representation of the broken unitary model of

the baryon magnetic moments (We give also values of the magnetic

moments which could be obtained in this simple model at F = 1.8,

D = 2.7 (1 − ǫ) = 1/3):

µp = F +
1

3
D = 2.7, (.2)

µn = −2

3
D = −1.8,

µΣ+ = F +
1

3
D +

1

3
(1 − ǫ)(F −D) = 2.6,

26



µΣ− = −F +
1

3
D +

1

3
(1 − ǫ)(F −D) = −1.0,

µΞ− = −F +
1

3
D +

2

3
(1 − ǫ)F − 0.5,

µΞ0 = −2

3
D +

2

3
(1 − ǫ)F = −1.4,

µΛ = −1

3
D +

1

9
(1 − ǫ)(3F +D) = −0.6.

However, this representation does not lead to a better description of

the data and does not change our conclusion as to strong differences

in the coefficients in the description of the PV- and PC- amplitudes.
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