Earth Effects and Mass Hierarchy using Supernova Neutrinos

Basudeb Dasgupta
Tata Institute of Fundamental Research, Mumbai & Max Planck Institute for Physics, Munich
Hierarchy Sensitivity, θ_{13} and Models

- Mass Hierarchy remains an important unknown parameter of the mass matrix.
- Next-Generation expts for hierarchy determination.
- Sensitive if $\sin^2 \theta_{13} > 10^{-3}$ to 10^{-4}.
- What happens for even smaller θ_{13}?
- One could use other sub-dominant effects.
- 3σ determination with 23 yrs at NF + 0.5 MT scintillation detector: de Gouvea & Winter (2005).
- Hierarchy determination is a difficult task if θ_{13} is too small.
- However small θ_{13} is typically likely to be a sign of some symmetry and we could be missing out a valuable hint towards that new symmetry, if we can’t determine the hierarchy…

So, what can be done about this problem?

Albright and Chen (2006)
SN neutrinos to the rescue?

- Claim: May be possible to determine the neutrino mass hierarchy even at extremely small θ_{13} using Earth matter effect on galactic SN neutrinos.
- Crucially dependent on collective effects in SN.
- Neutrino detection at a Liquid Argon detector.
- Antineutrino detection at water Cherenkov detectors.
Primary Fluxes from a SN

- $\nu_x = \cos \theta_{23} \nu_\mu + \sin \theta_{23} \nu_\tau$ (Similar for ν_y).
- Average energies: $E_e < E_{e\text{bar}} < E_{x,y}$.
- Mainly uncertainty in energy and luminosity of x and y “flavors”.
- Initial total fluxes: $\Phi_e > \Phi_{e\text{bar}} > \Phi_{x,y}$.
Collective Effects Redux

• For IH, exchange ν_e and ν_γ above the E_c.
• For IH, exchange all anti-ν_e and anti-ν_γ.
• For NH, no collective effects.

Duan, Fuller, Carlson, Qian, Pastor, Raffelt, Semikoz, Hannestad, Sigl, Wong, Smirnov, Abazajian, Beacom, Bell, Esteban-Pretel, Tomas, Fogli, Lisi, Marrone, Mirizzi, Dasgupta, Dighe …

• How stable and robust is all this?
 ▪ Small change in θ_{13} does not affect the result.
 ▪ Mu-tau effects can be ignored in cooling phase: Esteban-Pretel, Pastor, Raffelt, Sigl, Tomas (2007).
 ▪ Only if the ν_e and anti-ν_e spectra were identical, the answer is quite different…but that is unlikely: Raffelt&Sigl (2007).
Dependence on θ_{13}

- Allow enough time for conversions to take place: Duan, Fuller, Carlson, Qian (2007).

- Adiabaticity condition is expected to be satisfied quite well for θ_{13} at least as low as 10^{-10} but the strict lower bound needs to be calculated numerically from the neutrino density profile.
Collective Effects Redux

• For IH, exchange ν_e and ν_γ above the E_c.
• For IH, exchange all anti-ν_e and anti- ν_γ.
• For NH, no collective effects.

Duan, Fuller, Carlson, Qian, Pastor, Raffelt, Semikoz, Hannestad, Sigl, Wong, Smirnov, Abazajian, Beacom, Bell, Esteban-Pretel, Tomas, Fogli, Lisi, Marrone, Mirizzi, Dasgupta, Dighe ...

• How stable and robust is all this?

 ▪ Small change in θ_{13} does not affect the result.
 ▪ Mu-tau effects can be ignored in cooling phase: Esteban-Pretel, Pastor, Raffelt, Sigl, Tomas (2007).
 ▪ Only if the ν_e and anti-ν_e spectra were identical, the answer is quite different...but that is unlikely: Raffelt&Sigl (2007).
At small θ_{13} the H-resonance is completely non-adiabatic.

The L-resonance is always adiabatic.
Mass Basis Fluxes reaching Earth from SN

Neutrinos

<table>
<thead>
<tr>
<th>Flavor content in mass basis at</th>
<th>Normal Hierarchy</th>
<th>Inverted Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flux</td>
<td>((F_x, F_x, F_e))</td>
<td>((F_x, F_e, F_x))</td>
</tr>
<tr>
<td>After Collective</td>
<td>((F_x, F_x, F_e))</td>
<td>((F_x, F_e, F_x)</td>
</tr>
<tr>
<td>After MSW (at Earth)</td>
<td>((F_x, F_e, F_x))</td>
<td>((F_x, F_e, F_x)</td>
</tr>
</tbody>
</table>

Antineutrinos

<table>
<thead>
<tr>
<th>Flavor content in mass basis at</th>
<th>Normal Hierarchy</th>
<th>Inverted Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flux</td>
<td>((F_e, F_x, F_x))</td>
<td>((F_x, F_x, F_e))</td>
</tr>
<tr>
<td>After Collective</td>
<td>((F_e, F_x, F_x))</td>
<td>((F_e, F_x, F_x))</td>
</tr>
<tr>
<td>After MSW (at Earth)</td>
<td>((F_e, F_x, F_x))</td>
<td>((F_x, F_x, F_e))</td>
</tr>
</tbody>
</table>

N.B: Electron flavor: \(\nu_e = \cos \theta_{12} \nu_1 + \sin \theta_{12} \nu_2\)

Dasgupta&Dighe (2007)
SN spectra at Earth

Before

Neutrinos

Antineutrinos

Split

Swap

Antineutrino spectral split discussed by Fogli, Lisi, Marrone, Mirizzi, Tamborra in hep-ph/0808.0807

Dasgupta and Dighe (2007)
Spectral Split Signature in Neutrinos

- Spectral Split could be a signature for hierarchy determination at small \(\theta_{13} \): Duan, Fuller, Carlson Qian (2008).

- Spectral Split in neutrinos at \(E_c \leq 10 \text{ MeV} \).

- Challenging to observe even at a 100 Kt Liquid Argon detector.

- Main problem is that it appears at very low energy: Choubey, Dasgupta, Dighe, Mirizzi (to appear).
Earth Matter Effects

- Flux of electron neutrinos/antineutrinos at shadowed and unshadowed detector are different combinations of ν_1 and ν_2.
- In Earth, $\sin^2 \theta_{12}$ replaced by $P_E = P(\nu_2 \text{ to } \nu_e)$ in the expression $F_e = \cos^2 \theta_{12} F_1 + \sin^2 \theta_{12} F_2$, and P_E is oscillatory in l/E.

<table>
<thead>
<tr>
<th>Flavor content in mass basis at</th>
<th>Normal Hierarchy</th>
<th>Inverted Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flux</td>
<td>(F_x, F_x, F_e)</td>
<td>(F_x, F_e, F_x)</td>
</tr>
<tr>
<td>After Collective</td>
<td>(F_x, F_x, F_e)</td>
<td>(F_x, F_e, F_x)</td>
</tr>
<tr>
<td>After MSW (at Earth)</td>
<td>(F_x, F_e, F_x)</td>
<td>(F_x, F_e, F_x)</td>
</tr>
</tbody>
</table>

- But for IH, it does not make any difference - both are “x”!

- $R = (F_e \text{ shadowed} - F_e \text{ unshadowed}) / F_e \text{ unshadowed}$.

- R is zero for IH, but not NH.

- This distinguishes NH from IH.
Earth Effect in Neutrino Signal

- 100 kt Liq. Ar detector shadowed by 8000 km of Earth matter.
- Wiggles observable in NH; no wiggles in IH.
- Energy resolution is the key.
- Works for very small values of \(\theta_{13} \) in contrast to previous literature and other experiments: Choubey, Dasgupta, Dighe, Mirizzi (to appear).
- Observation will establish NH and \(\sin^2 \theta_{13} < 10^{-3} \).

\[\sin^2 \theta_{13} = 10^{-9} \]

L=10kpc
Garching flux
Earth Effect in Antineutrino Signal

- Two 0.4 MT water Cherenkov detectors — one shadowed, and other not shadowed by Earth.
- \(R = \frac{F_e^\text{shadowed} - F_e^\text{unshadowed}}{F_e^\text{unshadowed}} \)
- Significant “up-down asymmetry” for NH, and none for IH.
- Systematics and Statistics is the key.
- Signal is presence/absence (with a prior \(\sin^2 \theta_{13} < 10^{-5} \)) of Earth effects: Dasgupta, Dighe, Mirizzi (2008).
Baseline dependence

- What happens at other “baselines”?
- More than 8000 km: basically the same effect.
- Less: the effect is smaller.

See the online tool by Mirizzi, Raffelt and Serpico at http://www.mppmu.mpg.de/supernova/shadowing
No Degeneracy between Scenarios

Neutrinos

<table>
<thead>
<tr>
<th></th>
<th>Hierarchy</th>
<th>θ_{13}</th>
<th>Earth Effects</th>
<th>Shock Effects</th>
<th>Burst Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NH</td>
<td>Large</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>IH</td>
<td>Large</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>NH</td>
<td>Small</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>IH</td>
<td>Small</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Antineutrinos

<table>
<thead>
<tr>
<th></th>
<th>Hierarchy</th>
<th>θ_{13}</th>
<th>Earth Effects</th>
<th>Shock Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NH</td>
<td>Large</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>IH</td>
<td>Large</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>NH</td>
<td>Small</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>IH</td>
<td>Small</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Concluding Remarks

• Earth Matter Effects are a robust and model-independent signature.
• Good sensitivity to hierarchy and ball-park estimate of θ_{13}.
• Spectral Split is challenging to observe.
• Turbulence and stochastic density fluctuations don’t affect these results much (since θ_{13} is too small for ordinary matter effects to come into play).
• More interesting results could come out...collective efforts in progress!