Mauro Mezzetto,
Istituto Nazionale di Fisica Nucleare, Sezione di Padova

“Beta Beams"
Physics and Technology
Most of the material of this talk comes from M. Lindroos, M. Mezzetto “Artificial Neutrino Beams: Beta Beams”, Imperial College Press, in preparation.
Ultimate neutrino beams will be very challenging . . .

Searches for Leptonic CP Violation will require neutrino beams with:
- The highest possible intensity
- Very few or no intrinsic backgrounds
- Very good control of systematics

. . . and probably they will hit their intrinsic limitations

- Neutrino come from the decay of SECONDARY particles
- Secondary particle production is known with not great precision.
- At least four neutrino flavours in any beam configuration

from Huber, Mezzetto and Schwetz,
JHEP 0803:021, 2008

\[\sin^2 2\theta \]

\[\delta_{CP} / \pi \]

\[\sigma_{\mu} \]

\[\sigma_{e} \]

all systematics @ default

statistics only

T2HK CPV at 3\(\sigma\)
Collect, focus and accelerate the neutrino parents at a given energy. This is impossible within the pion lifetime, but can be tempted within the muon lifetime (Neutrino Factories) or within some radioactive ion lifetime (Beta Beams):

- Just one neutrino flavor in the beam
- Energy shape defined by just two parameters: the endpoint energy of the beta decay and the Lorenz boost γ of the parent ion.
- Flux normalization given by the number of ions circulating in the decay ring.
- Beam divergence given by γ.

...these limitations are overcome if secondary particles become primary
About the close detectors

SuperBeams

\[
N_{\text{events}}^{\text{far}} = \left(\sigma_{\nu_e} \epsilon_{\nu_e} P_{\nu_\mu \nu_e} + \sigma_{\nu_\mu}^{\text{NC}} \eta_{\text{NC}} + \sigma_{\nu_\mu}^{\text{CC}} \eta_{\text{CC}} P_{\nu_\mu \nu_\mu} \right) \phi_{\nu_\mu} + \sigma_{\nu_e}^{\text{CC}} \epsilon_{\nu_e} \phi_{\nu_e}
\]

\[
N_{\text{events}}^{\text{close}} = \left(\sigma_{\nu_\mu}^{\text{NC}} \eta'_{\text{NC}} + \sigma_{\nu_\mu}^{\text{CC}} \eta'_{\text{CC}} \right) \phi'_{\nu_\mu} + \sigma_{\nu_e}^{\text{CC}} \epsilon_{\nu_e} \phi'_{\nu_e}
\]

Beta Beams

\[
N_{\text{events}}^{\text{far}} = \left(\sigma_{\nu_\mu} \epsilon_{\nu_\mu} P_{\nu_\mu \nu_\mu} + \sigma_{\nu_e}^{\text{NC}} \eta_{\text{NC}} + \sigma_{\nu_e}^{\text{CC}} \eta_{\text{CC}} P_{\nu_\mu \nu_\mu} \right) \phi_{\nu_e}
\]

\[
N_{\text{events}}^{\text{close}} = \left(\sigma_{\nu_e}^{\text{NC}} \eta'_{\text{NC}} + \sigma_{\nu_e}^{\text{CC}} \eta'_{\text{CC}} \right) \phi_{\nu_e}
\]

- No need to disentangle NC from \(\nu_\mu \) events at the close detector
- No need of a hadroproduction experiment with its associated errors
- No problems on the close-far detector extrapolation
- BUT: no events in the close detector to measure signal (\(\nu_\mu \)) cross sections
Heavy ion production and acceleration is very well known at CERN

A beta beam facility would share many features (and much equipment) with the heavy ion programme at LHC.
see M. Lindroos et al., http://beta-beam.web.ch/beta-beam

1 ISOL target to produce He6, 100 μA, \(\Rightarrow 2.9 \cdot 10^{18} \) ion decays/straight session/year. \(\Rightarrow \bar{\nu}_e \).

1 ISOL target to produce Ne18, 100 μA, \(\Rightarrow 1.1 \cdot 10^{18} \) ion decays/straight session/year. \(\Rightarrow \nu_e \).
Some scaling laws in Beta Beams

<table>
<thead>
<tr>
<th>β^+ emitters</th>
<th>β^- emitters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion</td>
<td>Q_{eff} (MeV)</td>
</tr>
<tr>
<td>^{18}Ne</td>
<td>3.30</td>
</tr>
<tr>
<td>^{8}B</td>
<td>13.92</td>
</tr>
</tbody>
</table>

- Accelerators can accelerate ions up to $Z/A \times$ the proton energy.
- Lorentz boost: end point of neutrino energy $\Rightarrow 2\gamma Q$
- In the CM neutrinos are emitted isotropically \Rightarrow neutrino beam from accelerated ions gets more collimated $\propto \gamma^2$
- Merit factor for an experiment at the atmospheric oscillation maximum: $M = \frac{\gamma}{Q}$
- Ion lifetime must be:
 - As long as possible: to avoid ion decays during acceleration
 - As short as possible: to avoid to accumulate too many ions in the decay ring \Rightarrow optimal window: lifetimes around 1 s.
- Decay ring length scales $\propto \gamma$.
- Two body decay kinematics: going off-axis the neutrino energy changes (feature used in some ECB setup and in the low energy setup)
Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
• \(^{6}\text{He} \) production rate is \(\sim 2 \times 10^{13} \) ions/s (dc) for \(\sim 200 \) kW on target.

Beta-beam team
A single ^{18}Ne target is not enough

So far a single target is estimated to produce about 1/10 of the needed ^{18}Ne ions. Possible wayouts:
A single ^{18}Ne target is not enough

So far a single target is estimated to produce about $1/10$ of the needed ^{18}Ne ions. Possible wayouts:

Build 7 targets in parallel \rightarrow need 7 times more protons (1 MW proton beam at 1-2 GeV), proof of principle already tested at CERN.
A single ^{18}Ne target is not enough

So far a single target is estimated to produce about 1/10 of the needed ^{18}Ne ions. Possible wayouts:

Build 7 targets in parallel \rightarrow need 7 times more protons (1 MW proton beam at 1-2 GeV), proof of principle already tested at CERN.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Method</th>
<th>Rate within reach ions/second</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{18}Ne</td>
<td>ISOL at 1 GeV and 200 kW</td>
<td>$< 8 \times 10^{11}$</td>
</tr>
<tr>
<td>^{6}He</td>
<td>ISOL converter at 1 GeV and 200 kW</td>
<td>$< 5 \times 10^{13}$</td>
</tr>
<tr>
<td>^{18}Ne</td>
<td>Direct production (20 MeV, 2 MW) $^{16}\text{O}(^{3}\text{He},n)^{18}\text{Ne}$</td>
<td>$< 1 \times 10^{13}$</td>
</tr>
<tr>
<td>^{6}He</td>
<td>ISOL converter at 40 MeV Deuterons and 80 kW</td>
<td>$< 6 \times 10^{13}$</td>
</tr>
<tr>
<td>^{8}Li</td>
<td>Production ring through $^{7}\text{Li}(d,p)^{8}\text{Li}$</td>
<td>$< 1 \times 10^{14}$</td>
</tr>
</tbody>
</table>
The merits of the “short baselines"

SPS can accelerate ^6He up to $\gamma = 150 \Rightarrow$ baseline up to 300 km. Frejus is the only realistic possibility to accommodate a Megaton detector, 130 km away from CERN. The CERN-Frejus scenario, not necessarily the optimal one, is for $\gamma = 100$ and $L = 130$ km.

- Absolutely negligible matter effects: the cleanest possible environment for direct leptonic CP violation and θ_{13} searches.
- Almost all the events are quasi elastics.
- Reasonable energy shape information.
- Degeneracies don’t influence θ_{13} and LCPV discovery potential.

On the other hand

- Mass hierarchy cannot be directly measured. A not trivial sensitivity on $\text{sign}(\Delta m^2_{23})$ can however been recovered combining accelerator neutrino signals with the atmospherics’ (see the following).
- Small cross sections, loosely known and with important influence of nuclear effects.
At a depth of 4800 m.w.e at the Frejus tunnel. It’s possible to excavate up to five shafts of about 250,000 m3 each ($\phi = 65 \text{ m}$, full height=80 m).

Fiducial of 3 shafts: 440 kton.

30% coverage by using 12\" PMT’s from Photonis, 81k per shaft (equivalent in photostatistics to SK)
A Beta Beam has the same energy spectrum than the SPL SuperBeams and consumes 5% of the SPL protons.

The two beams could be fired to the same detector ⇒ LCPV searches through CP and T channels (with the possibility of using just neutrinos).

Access to CPTV direct searches.
θ_{13} sensitivity at 3 σ

From Campagne, Maltoni, Mezzetto, Schwetz, JHEP 0704 (2007) 003

Line width: 2% and 5% systematic errors.
Sensitivity to CP violation at 3σ

$\Delta \chi^2 (\delta_{CP} = 0, \pi) = 9$

- $\sigma_{syst} = 2\% - 5\%$

- β_B
The synergy with atmospheric neutrinos

Thomas Schwetz talk this morning
The red region is what is left after the atmospheric analysis.

Note how degeneracies were not influencing LCPV sensitivity too much.

\[\delta = -0.85 \pi, \quad \sin^2(2\theta_{13}) = 0.03, \quad \sin^2(2\theta_{23}) = 0.6 \]
From Campagne, Maltoni, Mezzetto, Schwetz, JHEP 0704 (2007) 003.

2σ sensitivity to normal hierarchy

Sensitivity of to the octant of θ_{23}

βB plus atmospherics: mass hierarchy and octant

true δ_{CP}

true value of $\sin^2\theta_{23}$
Several different beta-beam setups have been proposed in literature. Chronologically:

- High Energy Beta Beams
- Electron capture Beta Beams producing monochromatic neutrino beams
- Beta Beams based on $^8\text{B} / ^8\text{Li}$ ions
- High Energy $^8\text{B} / ^8\text{Li}$ Beta Beams
Need a proton machine of 1 TeV energy (LHC cannot be used at such high fluxes), only possible candidate: SPS+: an upgrade of SPS studied in view of a possible energy upgrade of LHC.

Assume the same ion decay rates of the SPS option. Requiring an improved decay ring configuration, otherwise decay rates scale inversely to the ion γ.

The decay ring length rises linearly with $\gamma \rightarrow$ high energy Beta Beams require developments of high field, big aperture, radiation hard superconducting magnets to keep short the decay ring.
Greater γ for the same ion decay rate/yr \rightarrow increase ν rates $\propto \gamma$. (Merit factor: $M = \frac{\gamma}{Q}$)

A water Čerenkov detector properly reconstructs the energy only for QE events \rightarrow the fraction of badly reconstructed events scales with energy \rightarrow kind of saturation of performances at high γs.

Other detector technologies as iron magnetized detectors, totally active scintillators and liquid argon have been considered in literature for high energy beta beams.
The chosen binning penalizes low energy βB (just one bin from 0 to 500 MeV)

Optimal SPS ($\gamma = 150$) not that far from optimal HE ($\gamma = 350$)

Atmospherics not included
Another high energy option

“High” energy ν_μ events can be efficiently detected by an iron-RPC detector.

This detector can be hosted inside an existing LNGS hall.

A full detector simulation shows that the main limiting factor of this setup are backgrounds from NC events. Fraction of NC backgrounds: $5.6 \cdot 10^{-3} @ \gamma = 350$. $8.8 \cdot 10^{-3} @ \gamma = 580$. CERN-Frejus has $2 \cdot 10^{-3}$, other studies on magnetic detectors assume NC background at 10^{-4} for $\gamma \geq 350$.

Overall performances (slightly) worse than the CERN-Frejus scenario (but better $\text{sign}(\Delta m_{23}^2)$ sensitivity)
Radioactive ions can produce neutrinos also through electron capture. **Monochromatic, single flavor neutrino beams!**

- The same complex could run either beta or electron capture beams.
- No way to have $\bar{\nu}_e$ beams (possible wayout: bound state β decays, see A. Fukumi et al. arXiv:hep-ex/0612047)
- Ions should be partially (and not fully) stripped. Technologically challenging.
- Ion candidates are much heavier than beta candidates and have longer lifetimes (far more difficult to stack them in the decay ring)
\(^8\text{B} / ^8\text{Li} \) Beta Beams

- C. Rubbia et al., NIM A568 (2006) 475
- Y. Mori, NIM A562 (2006) 591
- C. Rubbia hep-ph/0609235

- It could deliver up to two order of magnitudes more radioactive ions than the Eurisol targets.
- If realistic, this production method could bring to a completely different Beta Beam optimization scheme.
- Specific aspects of this innovative technology will be studied within the EuroNu design study, funded by EU and by the European funding agencies.
\({^8}\text{B} / {^8}\text{Li} \) Beta Beams (cont.)

<table>
<thead>
<tr>
<th>(\beta^+) emitters</th>
<th>(\beta^-) emitters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion</td>
<td>(Q_{\text{eff}}) (MeV)</td>
</tr>
<tr>
<td>(^{18}\text{Ne})</td>
<td>3.30</td>
</tr>
<tr>
<td>(^8\text{B})</td>
<td>13.92</td>
</tr>
</tbody>
</table>

Can produce a neutrino beam 4.7 times more energetic than \(^6\text{He} / {^{18}}\text{Ne} \), with a shorter decay ring. ⇒ cover longer baselines with the same accelerator.
For a given baseline, they provide a smaller flux \(\propto 1/Q^2 \) (since \(M = \gamma Q \))
For a given accelerator, optimal baseline, a smaller flux \(\propto (Z/A)/Q \)

C. Rubbia, 2006: \(^8\text{B} / ^8\text{Li} \) \(\beta B \) based on the Fermilab Main Injector, \((\gamma(^8\text{B}) = 80 \) and \(\gamma(^8\text{Li}) = 48 \) \) and a 50-100 kton liquid argon detector at Soudan (732 km baseline)

A. Donini, E. Fernandez-Martinez Phys.Lett. B641, 432 (2006): possibility of mixing \(^6\text{He} / {^{18}}\text{Ne} \) ions to \(^8\text{B} / {^8}\text{Li} \) ions ⇒ neutrinos at the first and at the second oscillation maximum in the same detector ⇒ not competitive with \(^6\text{He} / {^{18}}\text{Ne} \) high energy beta-beam.
For $L = \sqrt{2\pi}/G_F Y_e$ any δ_{CP} dependence disappears from $P_{e\mu}$ allowing to measure $\text{sign}(\Delta m^2_{23})$ effects without any degenerate solution.

$L_{\text{magic}} \simeq 7690$ km. The resonance energy for matter effects is:

$$E_{\text{res}} \equiv \frac{|\Delta m^2_{31}| \cos 2\theta_{13}}{2\sqrt{2}G_FN_e} \simeq 7 \text{ GeV}$$

($|\Delta m^2_{31}| = 2.4 \cdot 10^{-3}$ eV2, $\sin^2 2\theta_{13} = 0.1$).

In this regime flux of oscillated events scales as $1/L$ and not $1/L^2$, merit factor to be revised in favor of high Q ions.

Proposed by the India-based Neutrino Observatory (INO), where a 50 kton iron magnetized calorimeter (ICAL) is set to come up (S. Goswami talk) CERN-INO baseline: 7152 km.
Comparison made within the International Scoping Study (ISS) framework, arXiv:0710.4947 [hep-ph]. (Not including $^8\text{B}/^8\text{Li}\beta\text{B}$)
See K. Long talk.
Line widths reflect different possible assumptions about machine configurations, neutrino fluxes, detector performances, systematic errors.

![Graphs showing sensitivity to LCPV, mass hierarchy, and θ_{13}](image)
The following two tables compare beta-beams with neutrino factories under the following hypothesis

- Green field beta beam with two iron detectors at the oscillation maximum and at the magic baseline compared with the optimized Neutrino Factory set-up with two improved golden detectors (50 kton each) placed at 4000 km & 7500 km respectively. $E_\mu = 20$ GeV & total 5×10^{21} decays for μ^- & μ^+ each. Computed at the nominal beta beam ion decay rate and at 10 times the nominal fluxes.

- “Minimal“ beta beam configuration in case of large θ_{13} (in the reach of Double Chooz capable of measuring i) $\sin^2 2\theta_{13} > 0$ at 5σ, ii) mass hierarchy at 3σ for any value of δ_{CP} and iii) LCPV at 3σ for 80\% of the allowed values of δ_{CP}.

<table>
<thead>
<tr>
<th>Set-up</th>
<th>Mass Ordering (3σ) NH (True)</th>
<th>CP Sensitivity (3σ) NH (True)</th>
<th>sin^2 2θ_{13} Sensitivity (3σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1 x 10^{18} & 2.9 x 10^{18}</td>
<td>1.1 x 10^{18} & 2.9 x 10^{19}</td>
<td>1.1 x 10^{18} & 2.9 x 10^{19}</td>
</tr>
<tr>
<td>CERN-INO γ = 650, 7152 Km</td>
<td>4.7 x 10^{-4} (4.9 x 10^{-4})</td>
<td>9.4 x 10^{-5} (1.2 x 10^{-4})</td>
<td>Not possible</td>
</tr>
<tr>
<td>CERN-LNGS γ = 575, 730 Km</td>
<td>3.89 x 10^{-3} (9.23 x 10^{-3})</td>
<td>1.58 x 10^{-3} (4.48 x 10^{-3})</td>
<td>1.6 x 10^{-4} (1.8 x 10^{-4})</td>
</tr>
<tr>
<td>CERN-BOULBY γ = 575, 1050 Km</td>
<td>2.49 x 10^{-3} (7.87 x 10^{-3})</td>
<td>2.19 x 10^{-4} (4.1 x 10^{-3})</td>
<td>1.85 x 10^{-4} (2.02 x 10^{-4})</td>
</tr>
<tr>
<td>CERN-LNGS γ = 575, 730 Km + CERN-INO γ = 650, 7152 Km</td>
<td>2.7 x 10^{-4} (3.58 x 10^{-4})</td>
<td>4.64 x 10^{-5} (5.45 x 10^{-5})</td>
<td>1.42 x 10^{-4} (1.49 x 10^{-4})</td>
</tr>
<tr>
<td>CERN-BOULBY γ = 575, 1050 Km + CERN-INO γ = 650, 7152 Km</td>
<td>2.67 x 10^{-4} (3.37 x 10^{-4})</td>
<td>4.57 x 10^{-5} (5.17 x 10^{-5})</td>
<td>1.63 x 10^{-4} (1.76 x 10^{-4})</td>
</tr>
<tr>
<td>Optimized</td>
<td>4.5 x 10^{-5}</td>
<td>1.5 x 10^{-5}</td>
<td>4.5 x 10^{-5}</td>
</tr>
<tr>
<td>Neutrino Factory</td>
<td>(100% of δ_{CP} (true) coverage)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In case of large θ_{13}

<table>
<thead>
<tr>
<th>Setup</th>
<th>Baseline [km]</th>
<th>$\sin^2 2\theta_{13} = 0.04$</th>
<th>$\sin^2 2\theta_{13} = 0.08$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>730 810 1050 1290</td>
<td>730 810 1050 1290</td>
</tr>
<tr>
<td>Beta beams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^{18}\text{Ne}, ^6\text{He}$ to WC, $\mathcal{L} = 1$</td>
<td>220 230 290 350</td>
<td>200 210 240 230</td>
<td></td>
</tr>
<tr>
<td>$^{18}\text{Ne}, ^6\text{He}$ to TASD, $\mathcal{L} = 1$</td>
<td>- 300 370 430</td>
<td>300 310 340 380</td>
<td></td>
</tr>
<tr>
<td>$^{18}\text{Ne}, ^6\text{He}$ to WC, $\mathcal{L} = 5$</td>
<td>190 190 190 230</td>
<td>140 140 140 140</td>
<td></td>
</tr>
<tr>
<td>$^{18}\text{Ne}, ^6\text{He}$ to TASD, $\mathcal{L} = 5$</td>
<td>200 200 220 230</td>
<td>180 180 170 180</td>
<td></td>
</tr>
<tr>
<td>$^{8}\text{B}, ^8\text{Li}$ to WC, $\mathcal{L} = 5$</td>
<td>- - 100 130</td>
<td>80 80 100 110</td>
<td></td>
</tr>
<tr>
<td>$^{8}\text{B}, ^8\text{Li}$ to TASD, $\mathcal{L} = 5$</td>
<td>- - 150 190</td>
<td>- - 190 190</td>
<td></td>
</tr>
<tr>
<td>$^{8}\text{B}, ^8\text{Li}$ to WC, $\mathcal{L} = 10$</td>
<td>70 70 90 110</td>
<td>60 70 80 90</td>
<td></td>
</tr>
<tr>
<td>$^{8}\text{B}, ^8\text{Li}$ to TASD, $\mathcal{L} = 10$</td>
<td>- 100 130 140</td>
<td>110 110 120 130</td>
<td></td>
</tr>
<tr>
<td>Superbeam upgrades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2KK</td>
<td></td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>NOνA*</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WBB-120$_S$</td>
<td></td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Neutrino factories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDS-NF 1.0</td>
<td></td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>Low-E NF</td>
<td></td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Hybrids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF-SB</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Leptonic CP violation searches will require substantial upgrades of the next generation Long Baseline experiments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The difficulty of these searches makes innovative concepts on neutrino beams welcome.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta Beams can offer the ideal conditions for such searches: single flavor, perfectly predictable neutrino beams.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The great interest rised by Beta Beams in the neutrino physicists community is producing a wide range of conceptual setups, at different levels of feasibility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Following the support of several EU networks (BENE, Eurisol, EuroNu), Beta Beams should be ready to be proposed as a next to next generation neutrino facility by 2010.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>