Non-standard neutrino interactions
future bounds and models

Toshihiko Ota
Institut für Theoretische Physik und Astrophysik
Universität Würzburg

J. Kopp, TO, and W. Winter
to be published PRD [arXiv:0804.2261]

and

M. B. Gavela, D. Hernandez, TO and W. Winter
[arXiv:0809.****]
Within the current precision — Leading Order (LO)

Oscillation probabilities for $\nu_\mu \rightarrow \nu_\alpha$

$$P_{\nu_\mu \rightarrow \nu_e} + P_{\nu_\mu \rightarrow \nu_\mu} + P_{\nu_\mu \rightarrow \nu_\tau} = 1 \quad \text{(unitarity)}$$

Future experiments are sensitive to the Next LO $P_{\nu_\mu \rightarrow \nu_e} = 0$ Leading Order $+ \mathcal{O}(s_{13}^2)$

Mass-Texture, LFV Prediction... $+ \mathcal{O}(s_{13}^2 \frac{\Delta m_{31}^2}{\Delta m_{21}^2})$ CP violation (Leptogenesis)...

Direct evidence of New Physics

T. Ota (Uni Würzburg) NSI: future bounds and models
Within the current precision — Leading Order (LO)

Oscillation probabilities for $\nu_\mu \rightarrow \nu_\alpha$ (@atmospheric region $\Delta m^2_{31} L/E \sim 1$)

\[
\begin{align*}
P_{\nu_\mu \rightarrow \nu_e} + P_{\nu_\mu \rightarrow \nu_\mu} + P_{\nu_\mu \rightarrow \nu_\tau} & = 1 \\ 0 + 1 - P_{\nu_\mu \rightarrow \nu_\mu} & = 1 \quad \text{(unitarity)}
\end{align*}
\]

Future experiments are sensitive to the Next LO

\[
P_{\nu_\mu \rightarrow \nu_e} = 0 \quad \text{Leading Order}
\]
Preface

Within the current precision — Leading Order (LO)

Oscillation probabilities for $\nu_\mu \rightarrow \nu_\alpha$

\[
P_{\nu_\mu \rightarrow \nu_e} + P_{\nu_\mu \rightarrow \nu_\mu} + \frac{P_{\nu_\mu \rightarrow \nu_\tau}}{1 - P_{\nu_\mu \rightarrow \nu_\mu}} = 1 \quad \text{(unitarity)}
\]

Future experiments are sensitive to the Next LO

\[
P_{\nu_\mu \rightarrow \nu_e} = 0 \quad \text{Leading Order}
\]

\[
+ O(s_{13}^2) \quad \text{Mass-Texture, LFV Prediction...}
\]

\[
+ O(s_{13} \Delta m_{21}^2 / \Delta m_{31}^2) \quad \text{CP violation (Leptogenesis)...}
\]
Preface

Within the current precision — Leading Order (LO)

Oscillation probabilities for $\nu_\mu \rightarrow \nu_\alpha$ (@atmospheric region $\Delta m^2_{31} L/E \sim 1$)

$$P_{\nu_\mu \rightarrow \nu_e} + P_{\nu_\mu \rightarrow \nu_\mu} + P_{\nu_\mu \rightarrow \nu_\tau} = 1 \quad \text{(unitarity)}$$

Future experiments are sensitive to the Next LO

$$P_{\nu_\mu \rightarrow \nu_e} = 0 \quad \text{Leading Order}$$

$$+ \mathcal{O}(s_{13}^2) \quad \text{Mass-Texture, LFV Prediction...}$$

$$+ \mathcal{O}(s_{13} \Delta m^2_{21} / \Delta m^2_{31}) \quad \text{CP violation (Leptogenesis)...}$$

$$+ \text{Direct evidence of New Physics}$$

T. Ota (Uni Würzburg) NSI: future bounds and models
Outline

1. Introduction: NSI in oscillation experiments
2. Current bounds and sensitivity in future experiments
3. For building models with NSI
 - Dimension six op. — four-Fermi
 - Dimension eight op. — four-Fermi + two Higgs
 - Toy model
4. Summary
Outline

1. Introduction: NSI in oscillation experiments

2. Current bounds and sensitivity in future experiments

3. For building models with NSI
 - Dimension six op. — four-Fermi
 - Dimension eight op. — four-Fermi + two Higgs
 - Toy model

4. Summary
Introduction — NSIs

- **NSI** — Non-standard (could-be flavour-violating) interactions with neutrinos parametrized as 4-Fermi ints.

<table>
<thead>
<tr>
<th>Standard oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\nu_\alpha \rightarrow \nu_\beta} = \left</td>
</tr>
<tr>
<td>$H = \frac{1}{2E} \left{ U \begin{pmatrix} 0 & \Delta m^2_{21} \ \Delta m^2_{31} & \end{pmatrix} U^\dagger + \begin{pmatrix} a_{CC} & 0 \ 0 & 0 \end{pmatrix} \right}.$</td>
</tr>
</tbody>
</table>
Introduction — NSIs

- NSI — Non-standard (could-be flavour-violating) interactions with neutrinos parametrized as 4-Fermi ints.

Standard oscillation

\[P_{\nu_\alpha \rightarrow \nu_\beta} = \left| \langle \nu_\beta | e^{-iHL} | \nu_\alpha \rangle \right|^2, \]

\[H = \frac{1}{2E} \left\{ U \begin{pmatrix} 0 & \Delta m_{21}^2 \\ \Delta m_{31}^2 & \Delta m_{31}^2 \end{pmatrix} U^\dagger + \begin{pmatrix} a_{CC} & 0 \\ 0 & 0 \end{pmatrix} \right\}. \]

NSIs

\[\mathcal{L}_{CC} = 2\sqrt{2}G_F \tilde{\epsilon}_{\alpha\beta}^{CC} (\bar{\nu}_\alpha \gamma^\rho P_L \ell_\beta)(\bar{f}' \gamma^\rho P_L/R f) \]

\[\mathcal{L}_{NC} = 2\sqrt{2}G_F \tilde{\epsilon}_{\alpha\beta}^{NC} (\bar{\nu}_\alpha \gamma^\rho P_L \nu_\beta)(\bar{f} \gamma^\rho P_L/R f) \]
Introduction — NSIs

- NSI — Non-standard (could-be flavour-violating) interactions with neutrinos parametrized as 4-Fermi ints.

Oscillation with NSIs

\[P_{\nu_\alpha \rightarrow \nu_\beta} = \left| \langle \nu_\beta \rangle e^{-i(H + V_{NSI})L} \langle \nu_\alpha \rangle \right|^2 \]

- **CC type NSI** — flavour mixture states at source and detector

 \[|\nu_\alpha^s\rangle = |\nu_\alpha\rangle + \sum_{\gamma=e,\mu,\tau} \epsilon_{\alpha\gamma}^s |\nu_\gamma\rangle, \quad \text{e.g., } \pi^+ \xrightarrow{\epsilon_{\mu e}^s} \mu^+ \nu_e \]

 \[\langle \nu_\alpha^d \rangle = \langle \nu_\alpha \rangle + \sum_{\gamma=e,\mu,\tau} \epsilon_{\gamma\alpha}^d \langle \nu_\gamma \rangle, \quad \text{e.g., } \nu_\tau N \xrightarrow{\epsilon_{\tau e}^d} e^- X \]

- **NC type NSI** — extra matter effect in propagation

\[(V_{NSI})_{\beta\alpha} = \sqrt{2} G_F N_e \epsilon_{\beta\alpha}^m \]
Outline

1. Introduction: NSI in oscillation experiments

2. Current bounds and sensitivity in future experiments

3. For building models with NSI
 - Dimension six op. — four-Fermi
 - Dimension eight op. — four-Fermi + two Higgs
 - Toy model

4. Summary
Current bounds

From non-oscillation experiments
Yasuda talk at NuFact08, Davidson Peña-Garay Rius Santamaria JHEP **03** 011, Barranco Miranda Moura Valle Phys. Rev. **D77** 093014.

\[
\begin{pmatrix}
-4 < \epsilon_{ee}^m < 2.6 \\
|\epsilon_{e\mu}^m| < 1.4 \cdot 10^{-4} \\
-0.05 < \epsilon_{\mu\mu}^m < 0.08 \\
|\epsilon_{e\tau}^m| < 1.9 \\
|\epsilon_{\mu\tau}^m| < 0.25 \\
|\epsilon_{\tau\tau}^m| < 19 \\
\end{pmatrix}, \quad (90\%\text{CL}).
\]

From atmospheric neutrinos
Gonzalez-Garcia Maltoni Phys. Rept. **460** 1.

\[
|\epsilon_{\mu\tau}^m| < 0.038, \quad |\epsilon_{\mu\mu}^m - \epsilon_{\tau\tau}^m| < 0.12, \quad (90\%\text{CL}).
\]

- Bounds from non-osc. to tau-associated NSI are not strict.
 — Oscillation experiments can play an important role!
(Part of) References on sensitivities

MINOS

OPERA

Atmospheric

Atmospheric+K2K
Friedland Lunardini Phys Rev D72 053009.

T2K+D-Chooz

T2KK

Solar

Advanced superbeam experiments, Beta beam, NuFact ...
Ribeiro Minakata Nunokawa Uchinami Zukanovich-Funchal, JHEP 12 002...
Optimization for NSIs — Two-golden-detector setup

NuFACT

- Sensitivity to ϵ^{m}_{τ} and $\epsilon^{m}_{\mu \tau}$

\[|\epsilon^{m}_{\tau}| \text{ sensitivity (3}\sigma) \]

$E_\mu = 25 \text{ GeV}$

GLoBES 2008

- $L \sim 4000 \text{ km} + 7500 \text{ km}$ is good also for the NSI.

T. Ota (Uni Würzburg)
Optimization for NSIs

Current bounds and sensitivity in future experiments

Sensitivity reach of Two-Golden det. setup

\[
|\epsilon_{e\tau}^m| > 4.7 \cdot 10^{-3}, \\
|\epsilon_{\mu\tau}^m| > 1.8 \cdot 10^{-2}, \\
|\epsilon_{\tau\tau}^m| > 1.9 \cdot 10^{-2},
\]

(90% CL).

Outline

1. Introduction: NSI in oscillation experiments
2. Current bounds and sensitivity in future experiments
3. For building models with NSI
 - Dimension six op. — four-Fermi
 - Dimension eight op. — four-Fermi + two Higgs
 - Toy model
4. Summary

T. Ota (Uni Würzburg)
Bottom-up to Models

We concentrate on pure lepton processes

Bottom: Effective interaction

— but with lepton doublet L

$$\nu_\alpha \quad G_F \epsilon_{\beta\alpha}^m \quad \nu_\beta$$

\[\ell \quad \ell \]
Bottom-up to Models
We concentrate on pure lepton processes

Bottom: Effective interaction

— but with lepton doublet L

$$L_{\alpha} \rightarrow G_F \epsilon_{\beta\alpha}^m L_{\beta}$$
Bottom-up to Models
We concentrate on pure lepton processes

Bottom: Effective interaction
— but with lepton doublet L

![Diagram showing effective interactions involving L, ℓ, ν, and $G_F \epsilon_{\beta\alpha}^m$.]

— NSIs accompanied with charged lepton processes
Bottom-up to Models

We concentrate on pure lepton processes

Bottom: Effective interaction

— but with lepton doublet \(L \)

\[
L_\alpha \quad G_F \epsilon_{\beta \alpha}^m \quad L_\beta
\]

\(\ell \quad \ell \)

\[
\{ \nu_\alpha \quad G_F \epsilon_{\beta \alpha}^m \quad \nu_\beta \}, \quad \ell_\alpha \quad G_F \epsilon_{\beta \alpha}^m \quad \ell_\beta
\]

— NSIs accompanied with charged lepton processes

One step up from the bottom:

Decompose effective int. into fundamental ones, e.g. \(\bar{LL}EE \)

\[
L_\alpha \quad L_\beta \\
e_R \quad e_R
\]

\[
L_\alpha \quad L_\beta \\
e_R \quad e_R
\]

\[
L_\alpha \quad L_\beta \\
e_R \quad e_R
\]

T. Ota (Uni Würzburg)

NSI: future bounds and models
Bottom-up to Models
We concentrate on pure lepton processes

Bottom: Effective interaction

— but with lepton doublet L

\[L_\alpha \quad \quad G_F \epsilon_{\beta \alpha} \quad \quad L_\beta \quad \quad \ell \quad \quad \ell \]

\[\nu_\alpha \quad \quad G_F \epsilon_{\beta \alpha} \quad \quad \nu_\beta \quad \quad \ell \quad \quad \ell \]

\[\ell_\alpha \quad \quad G_F \epsilon_{\beta \alpha} \quad \quad \ell_\beta \quad \quad \ell \quad \quad \ell \]

— NSIs accompanied with charged lepton processes

One step up from the bottom:

Decompose effective int. into fundamental ones, e.g. $\bar{L}L\bar{E}E$

\[L_\alpha \quad \quad L_\beta \quad \quad 1^\nu_0 \quad \quad e_R \quad \quad e_R \]

\[L_\alpha \quad \quad L_\beta \quad \quad e_R \quad \quad e_R \]

\[L_\alpha \quad \quad L_\beta \quad \quad e_R \quad \quad e_R \]

T. Ota (Uni Würzburg)
Bottom-up to Models
We concentrate on pure lepton processes

Bottom: Effective interaction
— but with lepton doublet L

\[L_\alpha \quad G_F \epsilon_{\beta\alpha}^m \quad L_\beta \quad \in \left\{ \nu_\alpha \quad G_F \epsilon_{\beta\alpha}^m \quad \nu_\beta \quad , \quad \ell_\alpha \quad G_F \epsilon_{\beta\alpha}^m \quad \ell_\beta \right\} \]

— NSIs accompanied with charged lepton processes

One step up from the bottom:
Decompose effective int. into fundamental ones, e.g. $\bar{L}L\bar{E}E$

T. Ota (Uni Würzburg)
NSI: future bounds and models
Bottom-up to Models
We concentrate on pure lepton processes

Bottom: Effective interaction
— but with lepton doublet \(L \)

\[
\begin{align*}
\ell_{\alpha} & \quad \quad G_F \epsilon_{\beta\alpha}^m \quad L_{\beta} \\
\ell & \quad \quad \ell \\
\end{align*}
\]

\[
\begin{align*}
\nu_{\alpha} & \quad \quad G_F \epsilon_{\beta\alpha}^m \quad \nu_{\beta} \\
\ell & \quad \quad \ell \\
\end{align*}
\]

— NSIs accompanied with charged lepton processes

One step up from the bottom:
Decompose effective int. into fundamental ones, e.g. \(\bar{L}L\bar{E}E \)
Two effective ops, Buchmüller Weyler NPB268 621

\[\mathcal{L}_{\text{eff}} = \frac{(C_{LL}^1)_{\alpha\gamma}^\beta}{\Lambda^2} (\bar{L}^\beta \gamma^\rho L_\alpha) (\bar{L}^\delta \gamma_\rho L_\gamma) + \frac{(C_{LL}^3)_{\alpha\gamma}^\beta}{\Lambda^2} (\bar{L}^\beta \gamma^\rho \tau L_\alpha) (\bar{L}^\delta \gamma_\rho \tau L_\gamma) \]
Two effective ops, Buchmüller Weyler NPB268 621

\[
\mathcal{L}_{\text{eff}} = \frac{(C_{1LL})^{\alpha\gamma}_{\beta\delta}}{\Lambda^2} (\bar{L}^\beta \gamma^\rho L_\alpha)(\bar{L}^\delta \gamma_\rho L_\gamma) + \frac{(C_{3LL})^{\alpha\gamma}_{\beta\delta}}{\Lambda^2} (\bar{L}^\beta \gamma^\rho \bar{\tau} L_\alpha)(\bar{L}^\delta \gamma_\rho \bar{\tau} L_\gamma)
\]

\[
= \frac{(C_{\text{NSI}})^{\alpha e}_{\beta e}}{\Lambda^2} (\bar{\nu}_\beta \gamma^\rho P_L \nu_\alpha)(\bar{e}\gamma_\rho P_L e) + \frac{(C_{1LL} + C_{3LL})^{\alpha e}_{\beta e}}{\Lambda^2} (\bar{\ell}_\beta \gamma^\rho P_L \ell_\alpha)(\bar{e}\gamma_\rho P_L e)
\]

\[
+ \ldots \quad \text{NSI}
\]

- We can avoid CLI at the effective-op level, taking

\[
C_{1LL}^1 + C_{3LL}^3 = 0.
\]
Two effective ops, Buchmüller Weyler NPB268 621

\[L_{\text{eff}} = \left(\frac{C_{LL}^1}{\Lambda^2} \right)_{\alpha\gamma}^{\alpha\gamma} \left(\bar{L}^\beta \gamma^\rho L_\alpha \right) \left(\bar{L}^\delta \gamma_\rho L_\gamma \right) + \left(\frac{C_{LL}^3}{\Lambda^2} \right)_{\beta\delta}^{\alpha\gamma} \left(\bar{L}^\beta \gamma^\rho \bar{\tau} L_\alpha \right) \left(\bar{L}^\delta \gamma_\rho \bar{\tau} L_\gamma \right) \]

\[= \left(\frac{C_{NSI}}{\Lambda^2} \right)_{\beta e}^{\alpha e} \left(\bar{\nu}_\beta \gamma^\rho P_L \nu_\alpha \right) \left(\bar{e} \gamma_\rho P_L e \right) + \left(\frac{C_{LL}^1 + C_{LL}^3}{\Lambda^2} \right)_{\beta e}^{\alpha e} \left(\bar{\ell}_\beta \gamma^\rho P_L \ell_\alpha \right) \left(\bar{e} \gamma_\rho P_L e \right) \]

NSI

- We can avoid CLI at the effective-op level, taking \(C_{LL}^1 + C_{LL}^3 = 0 \).

- But, with mediators, NSI are still constrained.

Let me explain this at the following two slides...
For building models with NSI

Dimension six op. — four-Fermi

\[L_\alpha \rightarrow L_\beta \]

\[L_\gamma \rightarrow f^{1/3V} \]

\[1/3^0 \]

\[L_\gamma \rightarrow \frac{c^{1/3s}}{\Lambda^2} \]

\[L_\alpha \rightarrow L_\beta \]

\[1/3^{s-1} \]

\[L_\gamma \rightarrow L_\delta \]

\[1/3^0 \] does not induce CLI.

T. Ota (Uni Würzburg)

NSI: future bounds and models
For building models with NSI

In effective op basis

\[C_{LL}^1 = f^1 v + \frac{1}{4} c^1 s - \frac{3}{4} c^3 s \]

\[C_{LL}^3 = f^3 v - \frac{1}{4} c^1 s - \frac{1}{4} c^3 s \]
For building models with NSI
Dimension six op. — four-Fermi

In effective op basis
\[C^1_{LL} = f^1 v + \frac{1}{4} c^{1s} - \frac{3}{4} c^{3s} \]
\[C^3_{LL} = f^3 v - \frac{1}{4} c^{1s} - \frac{1}{4} c^{3s} \]

No CLI condition
\[C^1_{LL} + C^3_{LL} = 0 \]
\[f^1 v + f^3 v - c^{3s} = 0 \]

\[\frac{1}{3} \] does not induce CLI.
— The others need plural numbers of mediators to cancel CLI.

It seems to be free from the bounds but...
e.g., $\epsilon^m_{\mu\tau}$ from $\bar{L}^\tau L_e \bar{L}^e L_\mu$ with 1^s_{-1}

1. At the effective op. level, they are independent
For building models with NSI
Dimension six op. — four-Fermi

1. With the mediator, they are related with each other.

\[\epsilon_{m \mu \tau} \] is constrained from \(G_F \) measurement...

e.g., \(\epsilon_{m \mu \tau} \) from \(L^\tau L_e L^e L_\mu \) with \(1_{-1}^s \)

1. With the mediator, they are related with each other.

\[\epsilon_{m_{\mu\tau}} \] from \(\bar{L}^\tau L^e \bar{L}^e L^\mu \) with \(1^s_{-1} \)

\[\epsilon_{m_{\mu\tau}} \] is constrained from \(GF \) measurement...

2. ... and we also have a loop diagram for \(\tau \rightarrow \mu \gamma \),

\[\nu_e \]

\[\gamma \]
For building models with NSI

Dimension six op. — four-Fermi

1. With the mediator, they are related with each other.

\[\epsilon_{\mu\tau}^m \text{ from } \bar{L}^\tau L_e \bar{L}^e L \mu \text{ with } 1_{-1}^s \]

\[\text{Bergmann Grossman Pierce PRD61 053005, Antusch Baumann Fernández-Martinez arXiv0807.1003.} \]

2. ... and we also have a loop diagram for \(\tau \to \mu \gamma \),

Although \(\bar{L}^\tau L_e \bar{L}^e L \mu \) with \(1_{-1}^s \) is CLI-free at the effective-op level, it is constrained when we take into account mediators.
Beyond the four-fermion (dimension six) effective ops...
Beyond the four-fermion (dimension six) effective ops...

NSI from dimension eight operators with Higgs doublets.
Berezhiani Rossi PLB535 207, Davidson Peña-Garay Rius Santamaria JHEP03 011
Dimension eight operators

Dim.8: 4-Fermi+2 Higgs

Dim.6

\[\nu_\alpha \quad 1/\Lambda^2 \quad \nu_\beta \]

\[\ell \quad \ell \]

Dim.8

\[\left\langle H^0 \right\rangle \] \[\left\langle H^0 \right\rangle^2 / \Lambda^4 \]

\[\nu_\alpha \quad \nu_\beta \]

\[\ell \quad \ell \]

Many effective ops.
— Many possibilities to cancel CLI and avoid bounds

Berezhiani Rossi, PLB535 207, Davidson Peña-Garay Rius Santamaria JHEP03 011.

- We apply the bottom-up approach to dim.8 ops. like dim.6,
 — i.e., decompose dim.8 ops.
- More than 100 possible decompositions, but they can be
categorized into the small numbers of categories...

T. Ota (Uni Würzburg)
Dim.8 NSI induced by one diagram is always constrained!

Dim.8 NSI induced by one diagram is always constrained!

One diagram — is not the simplest.

Simplicity in a fundamental theory is the number of new fields = mediators
— the number of diagrams is determined by the particle contents.

Let me show an example of models for NSI with 2 mediators...
Basis operators
Buchmüller Weyler NPB268 621, Berezhiani Rossi, PLB535 207.

\[L_{\text{dim}6}^{\text{eff}} = \frac{(C_{LE})^\alpha_\beta}{\Lambda^2} (\bar{L}^{\beta} e_R)(\bar{e}_R L^{\alpha}_i) \]
only one possibility in dim6
— NSI always with CLI

\[L_{\text{dim}8}^{\text{eff}} = \frac{(C_{LEH})^\alpha_\beta}{\Lambda^4} (\bar{L}^{\beta} \gamma^\rho L^{\alpha}_i)(\bar{e}_R \gamma^\rho e_R)(H^\dagger H) \]

\[+ \frac{(C_{LEH}^3)^\alpha_\beta}{\Lambda^4} (\bar{L}^{\beta} \gamma^\rho \bar{\tau} L^{\alpha}_i)(\bar{e}_R \gamma^\rho e_R)(H^\dagger \bar{\tau} H) \]

All diagrams with \(\bar{L} L \bar{e}_R e_R (H^\dagger H) \) have to be reduced to these effective ops.

What we want is...
Berezhiani Rossi, PLB535 207, Davidson Peña-Garay Rius Santamaria JHEP03 011.

\[O_{\text{NSI}} = \left\{ (\bar{L}^i H_i) \gamma^\rho (H^{\dagger i} L_i) \right\} (\bar{e}_R \gamma^\rho e_R), \quad \text{where} \ H_i = (H^0 \ H^-)^T \]
Basis operators

Buchmüller Weyler NPB268 621, Berezhiani Rossi, PLB535 207.

\[
\mathcal{L}_{\text{eff}}^{\text{dim}6} = \frac{(C_{LE})_{\beta}^{\alpha}}{\Lambda^2} (\bar{L}^i e_R)(\bar{e}_R L_{\alpha i})
\]

only one possibility in dim6 — NSI always with CLI

\[
\mathcal{L}_{\text{eff}}^{\text{dim}8} = \frac{(C_{LEH})_{\beta}^{\alpha}}{\Lambda^4} (\bar{L}^\gamma \gamma^\rho L_{\alpha})(\bar{e}_R \gamma_\rho e_R)(H^\dagger H)
\]

\[
+ \frac{(C_{LEH})_{\beta}^{\alpha}}{\Lambda^4} (\bar{L}^\gamma \gamma^\rho \tau L_{\alpha})(\bar{e}_R \gamma_\rho e_R)(H^\dagger \tau H)
\]

All diagrams with \(\bar{L}L e_R e_R (H^\dagger H)\) have to be reduced to these effective ops.

What we want is...

Berezhiani Rossi, PLB535 207, Davidson Peña-Garay Rius Santamaria JHEP03 011.

\[
\mathcal{O}_{\text{NSI}} = \frac{1}{2} (\bar{L}^\beta \gamma^\rho L_{\alpha})(\bar{e}_R \gamma_\rho e_R)(H^\dagger H) + \frac{1}{2} (\bar{L}^\beta \gamma^\rho \tau L_{\alpha})(\bar{e}_R \gamma_\rho e_R)(H^\dagger \tau H)
\]

To form \(\mathcal{O}_{\text{NSI}}\): Any combinations with \(C_{LEH}^1 = C_{LEH}^3\).

—To cancel dim=6: \(C_{LE} = 0\).
A Toy Model
— with 2 mediators $\Phi(2^s_{1/2})$ and $\Delta_\rho(2^v_{3/2})$

Masses and coefficients should be related ...

Assuming $M_\Delta = M_\Phi$
— To cancel all dim.6: $2(g^*)^\alpha g_\beta = (y^*)^\alpha y_\beta$
— To form \mathcal{O}_{NSI}(cancel dim.8 CLI): $\lambda_{1s} + \lambda_{1v} = \lambda_{3s} + \lambda_{3v} \neq 0$

— Systematic study Gavela Hernandez O Winter

T. Ota (Uni Würzburg)
Outline

1. Introduction: NSI in oscillation experiments
2. Current bounds and sensitivity in future experiments
3. For building models with NSI
 - Dimension six op. — four-Fermi
 - Dimension eight op. — four-Fermi + two Higgs
 - Toy model
4. Summary
Current and future bounds

— Oscillation exps have a good sensitivity to τ-associated NSI.

- **Current:** From atmospheric neutrinos
 \[|\epsilon_{\mu\tau}^m| < 3.8 \times 10^{-2}, \quad |\epsilon_{\tau\tau}^m| < 1.2 \times 10^{-1}. \]

- **Future:** NuFact with two Golden detectors (IDS-NF)
 \[|\epsilon_{e\tau}^m| < 4.7 \cdot 10^{-3}, \quad |\epsilon_{\mu\tau}^m| < 1.8 \cdot 10^{-2}, \quad |\epsilon_{\tau\tau}^m| < 1.9 \cdot 10^{-2}. \]
Current and future bounds

— Oscillation exps have a good sensitivity to τ-associated NSI.

- Current: From atmospheric neutrinos
 \[|\epsilon^m_{e\tau}| < 3.8 \times 10^{-2}, \quad |\epsilon^m_{\mu\tau}| < 1.2 \times 10^{-1}. \]

- Future: NuFact with two Golden detectors (IDS-NF)
 \[|\epsilon^m_{e\tau}| < 4.7 \cdot 10^{-3}, \quad |\epsilon^m_{\mu\tau}| < 1.8 \cdot 10^{-2}, \quad |\epsilon^m_{\tau\tau}| < 1.9 \cdot 10^{-2}. \]

Bottom-up to models with NSI

- Effective op
 \[\xrightarrow{\text{to}} \text{Possible physically motivated models} \]
Current and future bounds

— Oscillation exps have a good sensitivity to τ-associated NSI.

• **Current:** From atmospheric neutrinos
 \[|\epsilon^{m}_{\mu\tau}| < 3.8 \times 10^{-2}, \quad |\epsilon^{m}_{\tau\tau}| < 1.2 \times 10^{-1}. \]

• **Future:** NuFact with two Golden detectors (IDS-NF)
 \[|\epsilon^{m}_{e\tau}| < 4.7 \cdot 10^{-3}, \quad |\epsilon^{m}_{\mu\tau}| < 1.8 \cdot 10^{-2}, \quad |\epsilon^{m}_{T\tau}| < 1.9 \cdot 10^{-2}. \]

Bottom-up to models with NSI

• Effective op \(\textbf{Bottom-up!} \) Decomposition to fundamental ops \(\rightarrow \) Possible physically motivated models
Summary

Current and future bounds

— Oscillation exps have a good sensitivity to τ-associated NSI.

- **Current**: From atmospheric neutrinos
 \[
 |\epsilon_{\mu\tau}^m| < 3.8 \times 10^{-2}, \quad |\epsilon_{\tau\tau}^m| < 1.2 \times 10^{-1}.
 \]

- **Future**: NuFact with two Golden detectors (IDS-NF)
 \[
 |\epsilon_{e\tau}^m| < 4.7 \cdot 10^{-3}, \quad |\epsilon_{\mu\tau}^m| < 1.8 \cdot 10^{-2}, \quad |\epsilon_{\tau\tau}^m| < 1.9 \cdot 10^{-2}.
 \]

Bottom-up to models with NSI

- Effective oper \rightarrow Decomposition to fundamental ops \rightarrow Possible physically motivated models

- Dim.8 NSI from one diagram is constrained
 — Bounds from Dim.6, Non-uni, and EWPD etc.

- A Toy model
 — Dim.8 NSI induced by 2 mediators with related couplings.

T. Ota (Uni Würzburg)
Back Up Slides
LLĒE at dim.6

Effective op basis Buchmüller Weyler NPB268 621

\[\mathcal{L}_{\text{eff}} = \frac{(C_{LE})^\alpha_\beta}{\Lambda^2} (\bar{L}^{\beta i} e_R)(\bar{e}_R L^{\alpha i}) \]

only one possibility — all decompositions are reduced to this eff. op.

T. Ota (Uni Würzburg)

NSI: future bounds and models
\[\mathcal{L}_{\text{eff}} = \frac{(C_{\text{LE}})}{\Lambda^2}(\overline{L}^i e_R)(\overline{e}_R L_{\alpha i}) \]

only one possibility — all decompositions are reduced to this eff. op.

\[= - \frac{(C_{\text{LE}})}{2\Lambda^2} \left[(\overline{\nu}^\beta \gamma^\rho P_L \nu_\alpha) + (\overline{\ell}^\beta \gamma^\rho P_L \ell_\alpha) \right] (\overline{e}_R \gamma^\rho e_R). \]

NSI charged lepton int. (CLI)

- We cannot avoid CLI.
- Within the bounds of CLI, we can still have

\[|\epsilon^{m}_{\tau\tau}| \lesssim 0.1, \]

Berezhiani Rossi PLB535 207, LEP \(e^+ e^- \rightarrow \tau^+ \tau^- \).
Summary

LLĒĒ at dim. 6

Effective op basis Buchmüller Weyler NPB268 621

\[
\mathcal{L}_{\text{eff}} = \frac{(C_{LE})^\alpha_\beta}{\Lambda^2} (\bar{L}^i e_R) (\bar{e}_R L_{\alpha i})
\]

only one possibility — all decompositions are reduced to this eff. op.

\[
= - \frac{(C_{LE})^\alpha_\beta}{2\Lambda^2} \left[(\bar{\nu}^\beta \gamma^\rho P_L \nu_\alpha) + (\bar{\ell}^\beta \gamma^\rho P_L \ell_\alpha) \right] (\bar{e}_R \gamma^\rho e_R).
\]

NSI charged lepton int. (CLI)

- We cannot avoid CLI.
- Within the bounds of CLI, we can still have

\[
|\epsilon^{m}_{\tau\tau}| \lesssim 0.1,
\]

Berezhiani Rossi PLB535 207, LEP $e^+ e^- \rightarrow \tau^+ \tau^-$.

On the other hand, $\bar{L}L\bar{L}L$ has more possibilities...
1: Diagram including vertex \((f_{SM}f'_{SM}) \)
- Bounds from Dim.6

2: Not including \((f_{SM}f'_{SM}) \) but including \((LH) \)
- Bounds from Non-unitarity of PMNS matrix

3: Not including \((f_{SM}f'_{SM}) \) but including \((EH) \)
- Bounds from electroweak precision data
e.g., Langacker London PRD38 886.

T. Ota (Uni Würzburg)
NSI: future bounds and models