Nonunitary mixing: current constraints and new ambiguity

Omar Miranda

Cinvestav
September 7, 2016

Outline

(1) Theoretical motivation
(2) The main formalism
(3) Constraints from non universality
(4) Oscillations

(5) The CP phase

Seesaw schemes

$$
\left[\begin{array}{cc}
M_{L} & D \\
D^{T} & M_{R}
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & D & 0 \\
D^{T} & 0 & M \\
0 & M^{T} & \mu
\end{array}\right]
$$

$\frac{n(n-1)}{2}$ mixing angles
$\frac{(n-1)(n-2)}{2}$ phases

Minkowski 1977, Gell-Mann Ramond Slanski 1979, Yanagida 1979, Mohapatra Senjanovic 80, Schechter Valle 1980.

Mixing matrix

$$
U^{n \times n}=\omega_{n-1 n} \omega_{n-2 n} \ldots \omega_{1 n} \omega_{n-2 n-1} \omega_{n-3 n-1} \ldots \omega_{1 n-1} \ldots \omega_{23} \omega_{13} \omega_{12}
$$

$$
\omega_{i j}=\left(\begin{array}{ccccccccc}
1 & 0 & & \cdots & 0 & \cdots & & & 0 \\
0 & 1 & & & & & & \\
\vdots & & c_{i j} & \cdots & 0 & \cdots & \eta_{i j} & & \\
& & \vdots & \ddots & & & \vdots & & \\
& & 0 & & 1 & & 0 & & \\
& & \vdots & & & \ddots & \vdots & & \\
& & \bar{\eta}_{i j} & \cdots & 0 & \cdots & c_{i j} & & \vdots \\
\vdots & & & & & & & 1 & 0 \\
0 & & & \cdots & 0 & \cdots & & 0 & 1
\end{array}\right)
$$

Mixing matrix

$$
U^{N P}=\omega_{n-1 n} \omega_{n-2 n} \ldots \omega_{2 n} \omega_{1 n} \omega_{n-2 n-1} \ldots \omega_{2 n-1} \omega_{1 n-1} \ldots \omega_{34} \omega_{24} \omega_{14}
$$

$$
\begin{gathered}
U^{3 \times 3}=\omega_{23} \omega_{13} \omega_{12} \\
\omega_{13}=\left(\begin{array}{cccc}
c_{13} & 0 & e^{-i \phi_{13}} s_{13} & \\
0 & 1 & 0 & \vdots \\
-e^{i \phi_{13}} s_{13} & 0 & c_{13} & \\
& \cdots & & 1
\end{array}\right)
\end{gathered}
$$

with $s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}, \eta_{i j}=e^{-i \phi_{i j}} \sin \theta_{i j}$, and $\bar{\eta}_{i j}=-e^{i \phi_{i j}} \sin \theta_{i j}$

Mixing matrix

$$
\begin{gathered}
U_{\alpha i}^{n \times n}=\left(\begin{array}{cc}
N & S \\
V & T
\end{array}\right) \\
N N^{\dagger}+S S^{\dagger}=I \\
N^{\dagger} N+V^{\dagger} V=I
\end{gathered}
$$

Mixing matrix

$$
\begin{gathered}
N=N^{N P} U^{3 \times 3}=\left(\begin{array}{ccc}
\alpha_{11} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right) U^{3 \times 3} \\
\alpha_{11}=c_{1 n} c_{1 n-1} c_{1 n-2} \ldots c_{14} \\
\alpha_{22}=c_{2 n} c_{2 n-1} c_{2 n-2} \ldots c_{24} \\
\alpha_{33}=c_{3 n} c_{3 n-1} c_{3 n-2} \ldots c_{34}
\end{gathered}
$$

Escrihuela, Forero, OGM, Tortola, Valle PRD 93053009 (2015)

Mixing matrix

$$
\begin{aligned}
\alpha_{21}=c_{2 n} c_{2 n-1} \ldots c_{25} \eta_{24} \bar{\eta}_{14} & +c_{2 n} \ldots c_{26} \eta_{25} \bar{\eta}_{15} c_{14}+ \\
\ldots & +\eta_{2 n} \bar{\eta}_{1 n} c_{1 n-1} c_{1 n-2} \ldots c_{14} \\
\alpha_{32}=c_{3 n} c_{3 n-1} \ldots c_{35} \eta_{34} \bar{\eta}_{24} & +c_{3 n} \ldots c_{36} \eta_{35} \bar{\eta}_{25} c_{24}+ \\
\ldots & +\eta_{3 n} \bar{\eta}_{2 n} c_{2 n-1} c_{2 n-2} \ldots c_{24}
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{i j}=e^{-i \phi_{i j}} \sin \theta_{i j} \\
& \bar{\eta}_{i j}=-e^{i \phi_{i j}} \sin \theta_{i j}
\end{aligned}
$$

Mixing matrix

$$
N N^{\dagger}=\left(\begin{array}{lcl}
\alpha_{11}^{2} & \alpha_{11} \alpha_{21}^{*} & \alpha_{11} \alpha_{31}^{*} \\
\alpha_{11} \alpha_{21} & \alpha_{22}^{2}+\left|\alpha_{21}\right|^{2} & \alpha_{22} \alpha_{32}^{*}+\alpha_{21} \alpha_{31}^{*} \\
\alpha_{11} \alpha_{31} & \alpha_{22} \alpha_{32}+\alpha_{31} \alpha_{21}^{*} & \alpha_{33}^{2}+\left|\alpha_{31}\right|^{2}+\left|\alpha_{32}\right|^{2}
\end{array}\right)
$$

Mixing matrix

$$
\begin{gathered}
N=N^{N P} U^{3 \times 3}=\left(\begin{array}{ccc}
\alpha_{11} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right) U^{3 \times 3} \\
\alpha_{11}=c_{1 n} c_{1 n-1} c_{1 n-2} \ldots c_{14} \\
\alpha_{22}=c_{2 n} c_{2 n-1} c_{2 n-2} \ldots c_{24} \\
\alpha_{33}=c_{3 n} c_{3 n-1} c_{3 n-2} \ldots c_{34}
\end{gathered}
$$

Escrihuela, Forero, OGM, Tortola, Valle PRD 93053009 (2015)

Current constraints

beta decay

$$
\begin{gather*}
\propto\left[\bar{e}_{L} \gamma_{\mu} \sum N_{1 i} \nu_{i L}\right] \tag{1}\\
G_{\beta}=G_{F} \sqrt{\left(N N^{\dagger}\right)_{11}}=G_{F} \sqrt{\alpha_{11}^{2}} .
\end{gather*}
$$

Current constraints

muon decay

$$
\begin{gather*}
\propto\left[\sum N_{2 j}^{*} \bar{\nu}_{j L} \gamma^{\mu} \mu_{L}\right]\left[\bar{e}_{L} \gamma_{\mu} \sum N_{1 i} \nu_{i L}\right] \tag{2}\\
G_{\mu}=G_{F} \sqrt{\left(N N^{\dagger}\right)_{11}\left(N N^{\dagger}\right)_{22}}=G_{F} \sqrt{\alpha_{11}^{2}\left(\alpha_{22}^{2}+\left|\alpha_{21}\right|^{2}\right)}
\end{gather*}
$$

Current constraints

$$
\begin{gathered}
\sum_{i=1}^{3}\left|V_{u i}\right|^{2}=\left(\frac{G_{\beta}}{G_{\mu}}\right)^{2}=\left(\frac{G_{F} \sqrt{\left(N N^{\dagger}\right)_{11}}}{G_{F} \sqrt{\left(N N^{\dagger}\right)_{11}\left(N N^{\dagger}\right)_{22}}}\right)^{2}=\frac{1}{\left(N N^{\dagger}\right)_{22}} \\
\sum_{i=1}^{3}\left|V_{u i}\right|^{2}=\frac{1}{\alpha_{22}^{2}+\left|\alpha_{21}\right|^{2}}=0.9999 \pm 0.0006 \\
\text { PDG Chin.Phys. C38 (2014) } 090001
\end{gathered}
$$

Current constraints

$$
\begin{aligned}
R_{\pi} & =\frac{\Gamma\left(\pi^{+} \rightarrow e^{+} \nu\right)}{\Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu\right)} \\
r_{\pi}=\frac{R_{\pi}}{R_{\pi}^{S M}}= & \frac{\left(N N^{\dagger}\right)_{11}}{\left(N N^{\dagger}\right)_{22}}=\frac{\alpha_{11}^{2}}{\alpha_{22}^{2}+\left|\alpha_{21}\right|^{2}} \\
r_{\pi}= & 0.9956 \pm 0.0040 \\
& \text { PDG Chin.Phys. C38 (2014) } 090001
\end{aligned}
$$

Oscillation probabilities

$$
\begin{aligned}
P_{\mu e}=\sum_{i, j}^{3} N_{\mu i}^{*} N_{e i} N_{\mu j} N_{e j}^{*} & -4 \sum_{j>i}^{3} \operatorname{Re}\left[N_{\mu j}^{*} N_{e j} N_{\mu i} N_{e i}^{*}\right] \sin ^{2}\left(\frac{\Delta m_{j i}^{2} L}{4 E}\right) \\
& +2 \sum_{j>i}^{3} \operatorname{Im}\left[N_{\mu j}^{*} N_{e j} N_{\mu i} N_{e i}^{*}\right] \sin \left(\frac{\Delta m_{j i}^{2} L}{2 E}\right) .
\end{aligned}
$$

Oscillation probabilities

$$
\begin{gathered}
P_{\mu e}=\left(\alpha_{11} \alpha_{22}\right)^{2} P_{\mu e}^{3 \times 3}+\alpha_{11}^{2} \alpha_{22}\left|\alpha_{21}\right| P_{\mu e}^{\prime}+\alpha_{11}^{2}\left|\alpha_{21}\right|^{2} \\
P_{\mu e}^{\prime}=-2\left[\sin \left(2 \theta_{13}\right) \sin \theta_{23} \sin \left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}}\right) \sin \left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}}+\phi+\delta_{C P}\right)\right] \\
- \\
\cos \theta_{13} \cos \theta_{23} \sin \left(2 \theta_{12}\right) \sin \left(\frac{\Delta m_{21}^{2} L}{2 E_{\nu}}\right) \sin (\phi)
\end{gathered}
$$

$$
\text { with }-\delta_{C P}=\phi_{12}-\phi_{13}+\phi_{23} \text { and } \phi=I_{N P}=\phi_{12}-\operatorname{Arg}\left(\alpha_{21}\right)
$$

Oscillation probabilities

$$
P_{\mu e}=\alpha_{11}^{2}\left|\alpha_{21}\right|^{2}=\frac{1}{2}\left[\sin ^{2}\left(2 \theta_{\mu e}\right)\right]_{\mathrm{eff}}
$$

NOMAD Coll. PLB 570 (2003) 19

Current constraints

P. Astier et al. Search for nu(mu) \rightarrow nu(e) oscillations in the NOMAD experiment. Phys. Lett., B570:19-31, 2003.

$$
\left|\alpha_{21}\right|^{2} \leq 0.0007
$$

Current constraints

K.A. Olive et al. Review of Particle Physics. Chin.Phys., C38:090001, 2014. A. Abada, A.M. Teixeira, A. Vicente, and C. Weiland. JHEP, 1402:091, 2014.
G. Czapek et al. Phys. Rev. Lett., 70:17-20, 1993.
P. Astier et al. Search for nu(mu) \rightarrow nu(e) oscillations in the NOMAD experiment. Phys. Lett., B570:19-31, 2003.

$$
\alpha_{11}^{2} \geq 0.989, \quad \alpha_{22}^{2} \geq 0.999, \quad\left|\alpha_{21}\right|^{2} \leq 0.0007
$$

Limits at $90 \% \mathrm{CL}$

Oscillation probabilities

$$
\begin{gathered}
P_{\mu e}=\left(\alpha_{11} \alpha_{22}\right)^{2} P_{\mu e}^{3 \times 3}+\alpha_{11}^{2} \alpha_{22}\left|\alpha_{21}\right| P_{\mu e}^{\prime}+\alpha_{11}^{2}\left|\alpha_{21}\right|^{2} \\
P_{\mu e}^{\prime}=-2\left[\sin \left(2 \theta_{13}\right) \sin \theta_{23} \sin \left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}}\right) \sin \left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}}+\phi+\delta_{C P}\right)\right] \\
- \\
\cos \theta_{13} \cos \theta_{23} \sin \left(2 \theta_{12}\right) \sin \left(\frac{\Delta m_{21}^{2} L}{2 E_{\nu}}\right) \sin (\phi)
\end{gathered}
$$

$$
\text { with }-\delta_{C P}=\phi_{12}-\phi_{13}+\phi_{23} \text { and } \phi=I_{N P}=\phi_{12}-\operatorname{Arg}\left(\alpha_{21}\right)
$$

CP-phase ambiguity

OGM, Tortola, Valle, PRL 117 (2016) 061804

CP-phase ambiguity

OGM, Tortola, Valle, PRL 117 (2016) 061804

On the positive side

- matter effects may also contribute to the signal
- Non-standard interactions may also contribute to the matter potential making the phenomenology more interesting
Forero, Huber PRL 117 (2016) 031801
Forero, Huang 1608.04719

The drawbacks

- Any improvement in the restriction of $\left|\alpha_{21}\right|$ leads to a diminish in the effect of the new phase (at least in vacuum).
- If we consider specific models for extra heavy neutral isosinglets, such as the seesaw, $\left|\alpha_{21}\right|$ gets more restricted.

Conclusions

- We have shown a parametrization that is useful from the phenomenological point of view and it is general for any number of extra neutral heavy leptons.
- The parametrization incorporates naturally the right number of parameters for a non unitary mixing matrix.
- Non unitarity will introduce new phases and their effect in the conversion probability have been shown.
- In the case of big values of the non diagonal α parameters a signal might be hinted if both neutrino chanels are measured.
- Otherwise, LBLN experiments could give complementary constraints on these parameters in future.

Thanks

CP-phase ambiguity

OGM, Tortola, Valle, PRL 117 (2016) 061804

