Hyper-Kamiokande Project

Yury Kudenko

INR, Moscow

On behalf of the Hyper-Kamiokande Proto-Collaboration

NOW 2018 Rosa Marina, Ostuni, Italy 11 September 2018

Collaboration

Hyper-Kamiokande proto-collaboration

- International proto-collaboration was formed in 2015
- 15 countries, 73 institutes, \sim 300 members
- 2 host institutes: U-Tokyo/ICRR & KEK/IPNS

Hyper-Kamiokande Project

Hyper-K water tank

Main goals:

- Search for CP violation
- Proton decay
- Neutrino astrophysics

Water tank 60 m(H)x74m(D) Total volume 260 kt Fiducial volume 190 kt ~10xSuper-K 40000 50 cm ID PMTs PMT coverage 40% 6700 20 cm OD PMT's Photon sensitivity ~2 times better than Super-K Construction of 2nd tank in Korea (1-3 deg off axis, 2nd oscill. maximum) is under study

J-PARC

Documentation

K. Abe et al. (Hyper-Kamiokande Collaboration), Hyper-Kamiokande Design Report, arXiV:1805.04163

K. Abe et al. (Hyper-Kamiokande Collaboration), **Physics potentials with the Second Hyper-Kamiokande detector in Korea**, PTEP 2018(2018) 6, 063C01

K. Abe et al. (Hyper-Kamiokande Working Group), **A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande**, arXiv:1412.4673 [physics.ins-det]

K. Abe et al. Letter of Intent: The Hyper-Kamiokande Experiment, arXiv:1109.3262 [hep-ex]

Hyper-Kamiokande web page: http://www.hyperk.org/

Water tank

Photosensors: ID

Hamamatsu R12860-HQE B&L 50 cm PMT

Other 50-cm candidates:

- Hybrid Photo-Detector
- MCP PMT
- Multi-PMT

1 p.e. \rightarrow time resolution 1.1. ns, \rightarrow charge resolution 35%

Photosensors

Y.Nishimura, talk at NEPTUNE2018

OD PMTs

6700 PMTs 1% photocoverage OD water thickness 1m barrel, 2 m top and bottom Hamamatsu R5912-HQE B&L 20 cm PMT

Parameters of Hyper-K

	Kamiokande	Super-K	Hyper-K			
Depth	$1,000 {\rm ~m}$	$1,000 {\rm m}$	$650 \mathrm{~m}$			
Dimensions of water tank						
diameter	15.6 m ϕ	39 m ϕ	74 m ϕ			
height	16 m	42 m	60 m			
Total volume	$4.5 \mathrm{kton}$	50 kton	258 kton			
Fiducial volume	0.68 kton	22.5 kton	$187 \mathrm{kton}$			
Outer detector thickness	\sim 1.5 m	$\sim 2~{\rm m}$	$1\sim 2~{\rm m}$			
Number of PMTs						
inner detector (ID)	948 (50 cm $\phi)$	11,129 (50 cm $\phi)$	40,000 (50 cm $\phi)$			
outer detector (OD)	123 (50 cm $\phi)$	1,885 (20 cm $\phi)$	6,700 (20 cm $\phi)$			
Photo-sensitive coverage	20%	40%	40%			
Single-photon detection	unknown	12%	24%			
efficiency of ID PMT						
Single-photon timing	$\sim 4~{\rm nsec}$	2-3 nsec	1 nsec			
resolution of ID PMT						

Tokai-to-Hyper-K (T2HK)

J-PARC neutrino beam

2.5° off-axis, peak energy 600 MeV (oscillation maximum), current beam power 485 kW

11 September 2018

Hype-K Project

J-PARC upgrade

ND280 upgrade

arXiv: 1606.08114; 1412.3086

arXiv:1609.04111

E61: Movable Water Cherenkov detector Inner diameter 8 m Inner detector height 6-8 m Multi-PMTs Load detector with $Gd_2(SO_4)_3$

New upstream tracker: Two Horizontal TPC One 3D fine-grained scintillator target SuperFGD TOF system around new tracker

Physics

Accelerator neutrinos

- search for CP violation
- precise measurement of oscillation parameters

Atmospheric and solar neutrinos

- mass hierarchy
- octant

Nucleon decays

Neutrino astronomy and astrophysics

Search for CP violation

1 Hyper-K tank , **1.3**MW, **10**x10⁷sec, v : anti-v = 1:3 , $sin^2 2\theta_{13} = 0.1$

Appearance v mode

 δ = 0 deg

Appearance \overline{v} mode

δ = 0 deg	Appearance signal	Wrong sign	Beam $ u_{e}$ background	NC background
ν mode	1643	15	259	134
anti-v mode	1183	206	317	196

Sensitivity to CP

Integrated beam power 1.3 MW x 10⁸ s \rightarrow 2.7 x 10²² POT with 30 GeV proton beam $v: \overline{v} = 1:3$ sin²2 $\theta_{13} = 0.1$

Exclusion of δ =0 at 8 σ (for δ = - $\pi/2$) 5 σ (3 σ) significance for 57 (80)% of possible δ values

CPV Significance

Combination T2K-II and NOvA can reach \sim 4.5 σ for δ = -90 deg by 2026

Significance for δ = 0 exclusion

Measurement of Δm_{32}^2 and θ_{23}

11 September 2018

Joint v_{μ} and v_{e} analysis

 \rightarrow precision measurements of oscillation parameters

Expected significance for wrong octant rejection

Proton Decay: $p \rightarrow \pi^0 e^+$

$p \rightarrow e^+ \pi^0$ events

Proton Decay: $p \rightarrow \overline{v} K^+$

Nucleon Decay sensitivities

Hyper-K 3 σ discovery potential

Joint analysis of atmospheric and accelerator neutrinos

Sensitivity to mass hierarchy

Octant sensitivity

Solar Neutrinos

Supernova Burst Neutrino

Main reaction in Hyper-K

 $\overline{v}_e + p \rightarrow n + e^+$, threshold ~ 3 MeV

DUNE primarily detects ν_{e}

Hyper-K will detect

- 50-80 k events for 10 kpc Supernova
- 2-3 k events for LMC (location of SN1987a)

10²

distance(kpc)

10

10

10³

Supernova Relic Neutrino

Status

- International Hyper-Kamiokande proto-collaboration is formed
- Two host institutions: U Tokyo/ICRR and KEK/IPNS
- U Tokyo has created a new institution for Hyper-K construction: Next generation Neutrino Science Organization (NNSO)
- Hyper-Kamiokande is the list of the Japanese Ministry of Education, Culture, Sports, Science (MEXT) 2017 Roadmap as one of 7 large projects
- Hyper-Kamiokande is awaiting final approval by Japanese Government soon

Hyper-K timeline

Assuming that Hyper-K budget is approved in 2018

T2HKK: δ precision

T2HKK : study oscillations at 1st and 2nd oscillation maxima

- \rightarrow better sensitivity to mass hierarchy
- \rightarrow better sensitivity to CP violation

Summary

Hyper-Kamiokande will be the major next generation neutrino experiment

Very broad physics program:

- search for CP violation in neutrino oscillations
- proton decay
- rich program with atmospheric and solar neutrinos
- supernova neutrinos
- + other interesting physics

Hyper-Kamiokande

- included in the MEXT Roadmap-2017
- will be built using Super-K and T2K experience
- start with one 260 kt detector
- open for new ideas and collaborators
- awating the final approval